Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Tipo de estudio
Intervalo de año de publicación
1.
Placenta ; 70: 25-33, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30316323

RESUMEN

INTRODUCTION: Cloning via somatic cell nuclear transfer (SCNT) has been associated with a variety of pathologies, primarily in the placenta, and these alterations may be associated with aberrant epigenetic reprogramming of the donor cell genome. We tested the hypothesis that DNA methylation patterns are not appropriately established after nuclear transfer and that those altered patterns are associated with specific aberrant phenotypes. METHODS: We compared global and specific placental DNA methylation patterns between aberrant and healthy SCNT-produced calves. Foetal cotyledon samples of ten SCNT pregnancies were collected. Global DNA methylation and hydroxymethylation levels were measured using an ELISA-based assay and specific DNA methylation of satellite I, and α-satellite repeat elements were measured using bisulfite PCR. RESULTS: Our analysis revealed that the SCNT-produced calves, which showed aberrant phenotypes, exhibited a reduced methylation pattern of the satellite I region compared to that of healthy calves. In contrast, global methylation and hydroxymethylation analyses showed higher levels for both cytosine modifications in SCNT-produced female calves with aberrant phenotypes. The satellite I region showed most of the sequences to be hypermethylated in live cloned calves compared with those in deceased calves. DISCUSSION: Our results suggest that this satellite I region could be used as an epigenetic biomarker for predicting offspring viability. Studies evaluating DNA methylation patterns of this satellite region in the donor cell genome or embryo biopsies could shed light on how to improve the efficiency of SCNT cloning.


Asunto(s)
Metilación de ADN , Placenta/metabolismo , Placentación/fisiología , Animales , Bovinos , Clonación de Organismos , Epigénesis Genética , Femenino , Embarazo
2.
J Insect Physiol ; 101: 185-194, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28800885

RESUMEN

In social insects, juvenile hormone (JH) has acquired novel functions related to caste determination and division of labor among workers, and this is best evidenced in the honey bee. In contrast to honey bees, stingless bees are a much more diverse group of highly eusocial bees, and the genus Melipona has long called special attention due to a proposed genetic mechanism of caste determination. Here, we examined methyl farnesoate epoxidase (mfe) gene expression, encoding an enzyme relevant for the final step in JH biosynthesis, and measured the hemolymph JH titers for all life cycle stages of Melipona scutellaris queens and workers. We confirmed that mfe is exclusively expressed in the corpora allata. The JH titer is high in the second larval instar, drops in the third, and rises again as the larvae enter metamorphosis. During the pupal stage, mfe expression is initialy elevated, but then gradually drops to low levels before adult emergence. No variation was, however, seen in the JH titer. In adult virgin queens, mfe expression and the JH titer are significantly elevated, possibly associated with their reproductive potential. For workers we found that JH titers are lower in foragers than in nurse bees, while mfe expression did not differ. Stingless bees are, thus, distinct from honey bee workers, suggesting that they have maintained the ancestral gonadotropic function for JH. Hence, the physiological circuitries underlying a highly eusocial life style may be variable, even within a monophyletic clade such as the corbiculate bees.


Asunto(s)
Abejas/genética , Proteínas de Insectos/genética , Hormonas Juveniles/metabolismo , Oxigenasas/genética , Animales , Abejas/crecimiento & desarrollo , Abejas/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Oxigenasas/metabolismo , Filogenia , Pupa/genética , Pupa/metabolismo , Análisis de Secuencia de ADN
3.
Genet Mol Biol ; 40(1): 61-68, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257527

RESUMEN

Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.

4.
Genet. mol. biol ; 40(1): 61-68, Jan.-Mar. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-892362

RESUMEN

Abstract Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...