Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 156, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167847

RESUMEN

Salmonella enterica serovar Typhimurium causes gastroenteritis and systemic infections in humans. For this bacterium the expression of a type III secretion system (T3SS) and effector proteins encoded in the Salmonella pathogenicity island-1 (SPI-1), is keystone for the virulence of this bacterium. Expression of these is controlled by a regulatory cascade starting with the transcriptional regulators HilD, HilC and RtsA that induce the expression of HilA, which then activates expression of the regulator InvF, a transcriptional regulator of the AraC/XylS family. InvF needs to interact with the chaperone SicA to activate transcription of SPI-1 genes including sicA, sopB, sptP, sopE, sopE2, and STM1239. InvF very likely acts as a classical activator; however, whether InvF interacts with the RNA polymerase alpha subunit RpoA has not been determined. Results from this study confirm the interaction between InvF with SicA and reveal that both proteins interact with the RNAP alpha subunit. Thus, our study further supports that the InvF/SicA complex acts as a classical activator. Additionally, we showed for the first time an interaction between a chaperone of T3SS effectors (SicA) and the RNAP.


Asunto(s)
Proteínas de Unión al ADN , Salmonella typhimurium , Humanos , Salmonella typhimurium/metabolismo , Proteínas de Unión al ADN/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , Chaperonas Moleculares/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631035

RESUMEN

Leishmaniasis is a neglected tropical disease affecting millions of people worldwide. A centenary approach to antimonial-based drugs was first initiated with the synthesis of urea stibamine by Upendranath Brahmachari in 1922. The need for new drug development led to resistance toward antimoniates. New drug development to treat leishmaniasis is urgently needed. In this way, searching for new substances with antileishmanial activity, we synthesized ten anthranyl phenylhydrazide and three quinazolinone derivatives and evaluated them against promastigotes and the intracellular amastigotes of Leishmania amazonensis. Three compounds showed good activity against promastigotes 1b, 1d, and 1g, with IC50 between 1 and 5 µM. These new phenylhydrazides were tested against Leishmania arginase, but they all failed to inhibit this parasite enzyme, as we have shown in a previous study. To explain the possible mechanism of action, we proposed the enzyme PTR1 as a new target for these compounds based on in silico analysis. In conclusion, the new anthranyl hydrazide derivatives can be a promising scaffold for developing new substances against the protozoa parasite.

3.
ChemMedChem ; 13(14): 1395-1404, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29856519

RESUMEN

Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Compuestos de Boro/química , Compuestos de Boro/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Tirfostinos/química , Tirfostinos/farmacología , Animales , Antineoplásicos/síntesis química , Compuestos de Boro/síntesis química , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Enfermedad de Chagas/tratamiento farmacológico , Diseño de Fármacos , Humanos , Ratones , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Tripanocidas/síntesis química , Trypanosoma cruzi/efectos de los fármacos , Tirfostinos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA