Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney Int Rep ; 9(1): 114-133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38312792

RESUMEN

Introduction: The RNA interference (RNAi) medication lumasiran reduces hepatic oxalate production in primary hyperoxaluria type 1 (PH1). Data outside clinical trials are scarce. Methods: We report on retrospectively and observationally obtained data in 33 patients with PH1 (20 with preserved kidney function, 13 on dialysis) treated with lumasiran for a median of 18 months. Results: Among those with preserved kidney function, mean urine oxalate (Uox) decreased from 1.88 (baseline) to 0.73 mmol/1.73 m2 per 24h after 3 months, to 0.72 at 12 months, and to 0.65 at 18 months, but differed according to vitamin B6 (VB6) medication. The highest response was at month 4 (0.55, -70.8%). Plasma oxalate (Pox) remained stable over time. Glomerular filtration rate increased significantly by 10.5% at month 18. Nephrolithiasis continued active in 6 patients, nephrocalcinosis ameliorated or progressed in 1 patient each. At last follow-up, Uox remained above 1.5 upper limit of normal (>0.75 mmol/1.73 m2 per 24h) in 6 patients. Urinary glycolate (Uglyc) and plasma glycolate (Pglyc) significantly increased in all, urine citrate decreased, and alkali medication needed adaptation. Among those on dialysis, mean Pox and Pglyc significantly decreased and increased, respectively after monthly dosing (Pox: 78-37.2, Pglyc: 216.4-337.4 µmol/l). At quarterly dosing, neither Pox nor Pglyc were significantly different from baseline levels. An acid state was buffered by an increased dialysis regimen. Systemic oxalosis remained unchanged. Conclusion: Lumasiran treatment is safe and efficient. Dosage (interval) adjustment necessities need clarification. In dialysis, lack of Pox reduction may relate to dissolving systemic oxalate deposits. Pglyc increment may be a considerable acid load requiring careful consideration, which definitively needs further investigation.

2.
Stem Cell Reports ; 7(2): 207-19, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27426040

RESUMEN

Tight regulation of the balance between self-renewal and differentiation of neural stem cells is crucial to assure proper neural development. In this context, Notch signaling is a well-known promoter of stemness. In contrast, the bifunctional brain-enriched microRNA miR-9/9(∗) has been implicated in promoting neuronal differentiation. Therefore, we set out to explore the role of both regulators in human neural stem cells. We found that miR-9/9(∗) decreases Notch activity by targeting NOTCH2 and HES1, resulting in an enhanced differentiation. Vice versa, expression levels of miR-9/9(∗) depend on the activation status of Notch signaling. While Notch inhibits differentiation of neural stem cells, it also induces miR-9/9(∗) via recruitment of the Notch intracellular domain (NICD)/RBPj transcriptional complex to the miR-9/9(∗)_2 genomic locus. Thus, our data reveal a mutual interaction between bifunctional miR-9/9(∗) and the Notch signaling cascade, calibrating the delicate balance between self-renewal and differentiation of human neural stem cells.


Asunto(s)
Diferenciación Celular/genética , Autorrenovación de las Células/genética , MicroARNs/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Receptores Notch/metabolismo , Transcripción Genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Regulación de la Expresión Génica , Sitios Genéticos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , MicroARNs/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica , Transducción de Señal/genética
3.
PLoS One ; 8(3): e59011, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527072

RESUMEN

MicroRNAs are key regulators of neural cell proliferation, differentiation and fate choice. Due to the limited access to human primary neural tissue, the role of microRNAs in human neuronal differentiation remains largely unknown. Here, we use a population of long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) derived from human embryonic stem cells to study the expression and function of microRNAs at early stages of human neural stem cell differentiation and neuronal lineage decision. Based on microRNA expression profiling followed by gain- and loss-of-function analyses in lt-NES cells and their neuronal progeny, we demonstrate that miR-153, miR-324-5p/3p and miR-181a/a contribute to the shift of lt-NES cells from self-renewal to neuronal differentiation. We further show that miR-125b and miR-181a specifically promote the generation of neurons of dopaminergic fate, whereas miR-181a inhibits the development of this neurotransmitter subtype. Our data demonstrate that time-controlled modulation of specific microRNA activities not only regulates human neural stem cell self-renewal and differentiation but also contributes to the development of defined neuronal subtypes.


Asunto(s)
Diferenciación Celular/genética , MicroARNs/genética , Neuronas/citología , Neuronas/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuritas/metabolismo , Reproducibilidad de los Resultados
5.
Stem Cell Rev Rep ; 8(3): 672-84, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22290418

RESUMEN

Stem cells have become a major focus of scientific interest as a potential source of somatic cell types for biomedical applications. Understanding and controlling the elicitors and mechanisms in differentiation of pluripotent stem cell-derived somatic cell types remains a key challenge. The major types of molecular processes that control cellular differentiation involve evolutionary conserved cell signaling pathways. Notch receptors participate in a wide variety of biological processes, including cell fate decisions of stem cells. This study explores the potential of protein transduction to directly deliver recombinant Notch-1 intracellular domain (NICD) into mammalian cells in order to accomplish transgene-free Notch activation. We engineered a cell-permeant version of NICD and explored its function on mouse and human neural stem cells. We show that NICD transduction modulates known direct and indirect Notch target genes and antagonizes the DAPT-mediated inhibition of Notch signaling on the transcriptional level. Moreover, NICD enhances cell proliferation accompanied by increased cyclin D1 and decreased p27 protein levels. In the absence of growth factors NICD strongly impairs neuronal differentiation while being insufficient to keep cells in a proliferative state. Furthermore, our studies depict NICD protein transduction as a novel tool for a time and dose-dependent non-genetic modulation of Notch signaling to decipher its cellular functions.


Asunto(s)
Células-Madre Neurales/metabolismo , Receptor Notch1/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/fisiología , Clonación Molecular , Ciclina D1/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Escherichia coli , Regulación de la Expresión Génica , Humanos , Ratones , Células 3T3 NIH , Células-Madre Neurales/fisiología , Estructura Terciaria de Proteína , Receptor Notch1/química , Receptor Notch1/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Transducción de Señal , Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/fisiología
6.
Stem Cells ; 28(5): 955-64, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20235098

RESUMEN

The controlled in vitro differentiation of human embryonic stem cells (hESCs) and other pluripotent stem cells provides interesting prospects for generating large numbers of human neurons for a variety of biomedical applications. A major bottleneck associated with this approach is the long time required for hESC-derived neural cells to give rise to mature neuronal progeny. In the developing vertebrate nervous system, Notch signaling represents a key regulator of neural stem cell (NSC) maintenance. Here, we set out to explore whether this signaling pathway can be exploited to modulate the differentiation of hESC-derived NSCs (hESNSCs). We assessed the expression of Notch pathway components in hESNSCs and demonstrate that Notch signaling is active under self-renewing culture conditions. Inhibition of Notch activity by the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) in hESNSCs affects the expression of human homologues of known targets of Notch and of several cell cycle regulators. Furthermore, DAPT-mediated Notch inhibition delays G1/S-phase transition and commits hESNSCs to neurogenesis. Combined with growth factor withdrawal, inhibition of Notch signaling results in a marked acceleration of differentiation, thereby shortening the time required for the generation of electrophysiologically active hESNSC-derived neurons. This effect can be exploited for neural cell transplantation, where transient Notch inhibition before grafting suffices to promote the onset of neuronal differentiation of hESNSCs in the host tissue. Thus, interference with Notch signaling provides a tool for controlling human NSC differentiation both in vitro and in vivo.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Inhibidores de Crecimiento/fisiología , Neuronas/metabolismo , Receptores Notch/antagonistas & inhibidores , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Técnicas de Cultivo de Célula , Línea Celular , Células Madre Embrionarias/citología , Fase G1/fisiología , Humanos , Ratones , Ratones SCID , Neuronas/citología , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Receptores Notch/genética , Fase S/fisiología
7.
Nat Biotechnol ; 28(4): 371-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20351689

RESUMEN

Prolonged culture of human embryonic stem cells (hESCs) can lead to adaptation and the acquisition of chromosomal abnormalities, underscoring the need for rigorous genetic analysis of these cells. Here we report the highest-resolution study of hESCs to date using an Affymetrix SNP 6.0 array containing 906,600 probes for single nucleotide polymorphisms (SNPs) and 946,000 probes for copy number variations (CNVs). Analysis of 17 different hESC lines maintained in different laboratories identified 843 CNVs of 50 kb-3 Mb in size. We identified, on average, 24% of the loss of heterozygosity (LOH) sites and 66% of the CNVs changed in culture between early and late passages of the same lines. Thirty percent of the genes detected within CNV sites had altered expression compared to samples with normal copy number states, of which >44% were functionally linked to cancer. Furthermore, LOH of the q arm of chromosome 16, which has not been observed previously in hESCs, was detected.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN/métodos , ADN/genética , Células Madre Embrionarias/clasificación , Células Madre Embrionarias/fisiología , Variación Genética/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Técnicas de Cultivo de Célula/métodos , Humanos , Datos de Secuencia Molecular
8.
PLoS One ; 3(9): e3294, 2008 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-18820729

RESUMEN

Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Neoplasias/genética , Neoplasias/metabolismo , Diferenciación Celular , Línea Celular , Cromatina/metabolismo , Silenciador del Gen , Genes Relacionados con las Neoplasias , Células HL-60 , Células HeLa , Humanos , Regiones Promotoras Genéticas , Factores de Tiempo , Células U937
9.
Cell Stem Cell ; 1(2): 153-6, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-18371347

RESUMEN

Totipotency, defined as the ability of a single cell to generate an entire individual, has traditionally served as a cornerstone to frame the moral relevance of nascent human life. This "potentiality principle" has served as an ethical reference point for shaping legal regulations for stem cell research in most Western countries. Based on heterogeneous ethical, religious, and political views, different countries cope with recent advances in mammalian cloning and reprogramming in a remarkably diverse manner. This and related issues were key topics at a recent meeting held in Berlin, Germany, on ethical aspects of stem cell research in Europe. An emerging view from this event is that international heterogeneity in stem cell politics and legislation must be overcome in order to develop this field toward biomedical application.


Asunto(s)
Células Madre Adultas/fisiología , Investigaciones con Embriones/ética , Células Madre Embrionarias/fisiología , Células Madre Adultas/citología , Animales , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Creación de Embriones para Investigación/ética
10.
Dev Cell ; 10(4): 497-508, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16580994

RESUMEN

Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of "muscle-specific" genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/fisiología , Movimiento Celular/fisiología , Proteínas de Drosophila/fisiología , Perfilación de la Expresión Génica , Oogénesis/fisiología , Ovario/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas del Citoesqueleto/fisiología , Drosophila , Proteínas de Drosophila/genética , Femenino , Oogénesis/genética , Ovario/citología , Ovario/metabolismo , Estatmina/fisiología , Factores de Transcripción/genética , Regulación hacia Arriba
11.
RNA ; 11(1): 70-6, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15574514

RESUMEN

Archaeal pre-tRNAs are characterized by the presence of the bulge-helix-bulge (BHB) structure in the intron stem-and-loop region. A chimeric pre-tRNA was constructed bearing an intron of the archaeal type and the mature domain of the Saccharomyces cerevisiae suppressor SUP4 tRNA(Tyr). This pre-tRNA(ArchEuka) is correctly cleaved in several cell-free extracts and by purified splicing endonucleases. It is also cleaved and ligated in S. cerevisiae cells, providing efficient suppression of nonsense mutations in various genes.


Asunto(s)
Precursores del ARN/genética , Precursores del ARN/metabolismo , Secuencia de Bases , Quimera/genética , Genes Fúngicos , Intrones , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Precursores del ARN/química , Empalme del ARN , ARN de Archaea/química , ARN de Archaea/genética , ARN de Archaea/metabolismo , ARN de Transferencia de Tirosina/química , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...