Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(2): e8, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37994786

RESUMEN

Prokaryotic and eukaryotic adaptive immunity differ considerably. Yet, their fundamental mechanisms of gene editing via Cas9 and activation-induced deaminase (AID), respectively, can be conveniently complimentary. Cas9 is an RNA targeted dual nuclease expressed in several bacterial species. AID is a cytosine deaminase expressed in germinal centre B cells to mediate genomic antibody diversification. AID can also mediate epigenomic reprogramming via active DNA demethylation. It is known that sequence motifs, nucleic acid structures, and associated co-factors affect AID activity. But despite repeated attempts, deciphering AID's intrinsic catalytic activities and harnessing its targeted recruitment to DNA is still intractable. Even recent cytosine base editors are unable to fully recapitulate AID's genomic and epigenomic editing properties. Here, we describe the first instance of a modular AID-based editor that recapitulates the full spectrum of genomic and epigenomic editing activity. Our 'Swiss army knife' toolbox will help better understand AID biology per se as well as improve targeted genomic and epigenomic editing.


Asunto(s)
Citosina Desaminasa , Edición Génica , Sistemas CRISPR-Cas , Citosina/química , Citosina Desaminasa/genética , Epigenómica/métodos , Edición Génica/métodos , ARN/genética , Proteína 9 Asociada a CRISPR/metabolismo
2.
NPJ Breast Cancer ; 9(1): 97, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042915

RESUMEN

Intratumoral heterogeneity impacts the success or failure of anti-cancer therapies. Here, we investigated the evolution and mechanistic heterogeneity in clonal populations of cell models for estrogen receptor positive breast cancer. To this end, we established barcoded models of luminal breast cancer and rendered them resistant to commonly applied first line endocrine therapies. By isolating single clones from the resistant cell pools and characterizing replicates of individual clones we observed inter- (between cell lines) and intra-tumor (between different clones from the same cell line) heterogeneity. Molecular characterization at RNA and phospho-proteomic levels revealed private clonal activation of the unfolded protein response and respective sensitivity to inhibition of the proteasome, and potentially shared sensitivities for repression of protein kinase C. Our in vitro findings are consistent with tumor-heterogeneity that is observed in breast cancer patients thus highlighting the need to uncover heterogeneity at an individual patient level and to adjust therapies accordingly.

3.
Cancer Discov ; 12(11): 2666-2683, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35895872

RESUMEN

Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE: EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Humanos , Línea Celular Tumoral , Replicación del ADN , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Tirosina Quinasa del Receptor Axl
4.
Nat Commun ; 13(1): 2558, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538064

RESUMEN

Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Infecciones por Virus de Epstein-Barr , Linfoma de Células B Grandes Difuso , Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Genómica , Herpesvirus Humano 4 , Humanos , Linfoma de Células B Grandes Difuso/metabolismo
5.
J Extracell Biol ; 1(4): e37, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35574251

RESUMEN

Coronavirus disease 2019 (COVID-19) has transformed very quickly into a world pandemic with severe and unexpected consequences on human health. Concerted efforts to generate better diagnostic and prognostic tools have been ongoing. Research, thus far, has primarily focused on the virus itself or the direct immune response to it. Here, we propose extracellular vesicles (EVs) from serum liquid biopsies as a new and unique modality to unify diagnostic and prognostic tools for COVID-19 analyses. EVs are a novel player in intercellular signalling particularly influencing immune responses. We herein show that innate and adaptive immune EVs profiling, together with SARS-CoV-2 Spike S1+ EVs provide a novel signature for SARS-CoV-2 infection. It also provides a unique ability to associate the co-existence of viral and host cell signatures to monitor affected tissues and severity of the disease progression. And provide a phenotypic insight into COVID-associated EVs.

6.
Ageing Res Rev ; 70: 101410, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280555

RESUMEN

Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.


Asunto(s)
Envejecimiento , Inmunosenescencia , Anciano , Humanos , Sistema Inmunológico , Inflamación , Rejuvenecimiento
7.
Cancer Res ; 81(14): 3862-3875, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33941614

RESUMEN

Lung cancers driven by mutant forms of EGFR invariably develop resistance to kinase inhibitors, often due to secondary mutations. Here we describe an unconventional mechanism of resistance to dacomitinib, a newly approved covalent EGFR kinase inhibitor, and uncover a previously unknown step of resistance acquisition. Dacomitinib-resistant (DR) derivatives of lung cancer cells were established by means of gradually increasing dacomitinib concentrations. These DR cells acquired no secondary mutations in the kinase or other domains of EGFR. Along with resistance to other EGFR inhibitors, DR cells acquired features characteristic to epithelial-mesenchymal transition, including an expanded population of aldehyde dehydrogenase-positive cells and upregulation of AXL, a receptor previously implicated in drug resistance. Unexpectedly, when implanted in animals, DR cells reverted to a dacomitinib-sensitive state. Nevertheless, cell lines derived from regressing tumors displayed renewed resistance when cultured in vitro. Three-dimensional and cocultures along with additional analyses indicated lack of involvement of hypoxia, fibroblasts, and immune cells in phenotype reversal, implying that other host-dependent mechanisms might nullify nonmutational modes of resistance. Thus, similar to the phenotypic resistance of bacteria treated with antibiotics, the reversible resisters described here likely evolve from drug-tolerant persisters and give rise to the irreversible, secondary mutation-driven nonreversible resister state. SIGNIFICANCE: This study reports that stepwise acquisition of kinase inhibitor resistance in lung cancers driven by mutant EGFR comprises a nonmutational, reversible resister state. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3862/F1.large.jpg.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología
8.
Oncogene ; 40(15): 2651-2666, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692466

RESUMEN

HER3 is highly expressed in luminal breast cancer subtypes. Its activation by NRG1 promotes activation of AKT and ERK1/2, contributing to tumour progression and therapy resistance. HER3-targeting agents that block this activation, are currently under phase 1/2 clinical studies, and although they have shown favorable tolerability, their activity as a single agent has proven to be limited. Here we show that phosphorylation and activation of HER3 in luminal breast cancer cells occurs in a paracrine manner and is mediated by NRG1 expressed by cancer-associated fibroblasts (CAFs). Moreover, we uncover a HER3-independent NRG1 signaling in CAFs that results in the induction of a strong migratory and pro-fibrotic phenotype, describing a subtype of CAFs with elevated expression of NRG1 and an associated transcriptomic profile that determines their functional properties. Finally, we identified Hyaluronan Synthase 2 (HAS2), a targetable molecule strongly correlated with NRG1, as an attractive player supporting NRG1 signaling in CAFs.


Asunto(s)
Neoplasias de la Mama/genética , Fibroblastos Asociados al Cáncer/metabolismo , Neurregulina-1/metabolismo , Proteómica/métodos , Femenino , Humanos , Microambiente Tumoral
9.
Int J Cancer ; 148(8): 1993-2009, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33368291

RESUMEN

Uncontrolled proliferation and altered metabolic reprogramming are hallmarks of cancer. Active glycolysis and glutaminolysis are characteristic features of these hallmarks and required for tumorigenesis. A fine balance between cancer metabolism and autophagy is a prerequisite of homeostasis within cancer cells. Here we show that glutamate pyruvate transaminase 2 (GPT2), which serves as a pivot between glycolysis and glutaminolysis, is highly upregulated in aggressive breast cancers, particularly the triple-negative breast cancer subtype. Abrogation of this enzyme results in decreased tricarboxylic acid cycle intermediates, which promotes the rewiring of glucose carbon atoms and alterations in nutrient levels. Concordantly, loss of GPT2 results in an impairment of mechanistic target of rapamycin complex 1 activity as well as the induction of autophagy. Furthermore, in vivo xenograft studies have shown that autophagy induction correlates with decreased tumor growth and that markers of induced autophagy correlate with low GPT2 levels in patient samples. Taken together, these findings indicate that cancer cells have a close network between metabolic and nutrient sensing pathways necessary to sustain tumorigenesis and that aminotransferase reactions play an important role in maintaining this balance.


Asunto(s)
Autofagia/genética , Regulación Neoplásica de la Expresión Génica , Transaminasas/genética , Neoplasias de la Mama Triple Negativas/genética , Carga Tumoral/genética , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Femenino , Técnicas de Inactivación de Genes , Humanos , Células MCF-7 , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Interferencia de ARN , Análisis de Supervivencia , Transaminasas/antagonistas & inhibidores , Transaminasas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
10.
Int J Cancer ; 148(6): 1438-1451, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32949162

RESUMEN

DNA sequencing and RNA sequencing are increasingly applied in precision oncology, where molecular tumor boards evaluate the actionability of genetic events in individual tumors to guide targeted treatment. To work toward an additional level of patient characterization, we assessed the abundance and activity of 27 proteins in 134 patients whose tumors had previously undergone whole-exome and RNA sequencing within the Molecularly Aided Stratification for Tumor Eradication Research (MASTER) program of National Center for Tumor Diseases, Heidelberg. Proteomic and phosphoproteomic targets were selected to reflect the most relevant therapeutic baskets in MASTER. Among six different therapeutic baskets, the proteomic data supported treatment recommendations that were based on DNA and RNA analyses in 10% to 57% and frequently suggested alternative treatment options. In several cases, protein activities explained the patients' clinical course and provided potential explanations for treatment failure. Our study indicates that the integrative analysis of DNA, RNA and protein data may refine therapeutic stratification of individual patients and, thus, holds potential to increase the success rate of precision cancer therapy. Prospective validation studies are needed to advance the integration of proteomic analysis into precision oncology.


Asunto(s)
Oncología Médica/métodos , Terapia Molecular Dirigida/métodos , Neoplasias , Medicina de Precisión/métodos , Proteómica/métodos , Adulto , Anciano , Biomarcadores de Tumor/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/genética , Neoplasias/terapia , Prueba de Estudio Conceptual
11.
Cancers (Basel) ; 12(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317058

RESUMEN

Extracellular vesicles (EVs) are emerging as potent and intricate intercellular communication networks. From their first discovery almost forty years ago, several studies have bolstered our understanding of these nano-vesicular structures. EV subpopulations are now characterized by differences in size, surface markers, cargo, and biological effects. Studies have highlighted the importance of EVs in biology and intercellular communication, particularly during immune and tumor interactions. These responses can be equally mediated at the proteomic and epigenomic levels through surface markers or nucleic acid cargo signaling, respectively. Following the exponential growth of EV studies in recent years, we herein synthesize new aspects of the emerging immune-tumor EV-based intercellular communications. We also discuss the potential role of EVs in fundamental immunological processes under physiological conditions, viral infections, and tumorigenic conditions. Finally, we provide insights on the future prospects of immune-tumor EVs and suggest potential avenues for the use of EVs in diagnostics and therapeutics.

12.
Cancers (Basel) ; 12(10)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050633

RESUMEN

Breast cancer is one of the leading causes of death for women worldwide. Patients whose tumors express Estrogen Receptor α account for around 70% of cases and are mostly treated with targeted endocrine therapy. However, depending on the degree of severity of the disease at diagnosis, 10 to 40% of these tumors eventually relapse due to resistance development. Even though recent novel approaches as the combination with CDK4/6 inhibitors increased the overall survival of relapsing patients, this remains relatively short and there is a urgent need to find alternative targetable pathways. In this study we profiled the early phases of the resistance development process to uncover drivers of this phenomenon. Time-resolved analysis revealed that ATF3, a member of the ATF/CREB family of transcription factors, acts as a novel regulator of the response to therapy via rewiring of central signaling processes towards the adaptation to endocrine treatment. ATF3 was found to be essential in controlling crucial processes such as proliferation, cell cycle, and apoptosis during the early response to treatment through the regulation of MAPK/AKT signaling pathways. Its essential role was confirmed in vivo in a mouse model, and elevated expression of ATF3 was verified in patient datasets, adding clinical relevance to our findings. This study proposes ATF3 as a novel mediator of endocrine resistance development in breast cancer and elucidates its role in the regulation of downstream pathways activities.

13.
BMC Cancer ; 20(1): 676, 2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32684154

RESUMEN

BACKGROUND: Estrogen receptor (ER) positive breast cancer is often effectively treated with drugs that inhibit ER signaling, i.e., tamoxifen (TAM) and aromatase inhibitors (AIs). However, 30% of ER+ breast cancer patients develop resistance to therapy leading to tumour recurrence. Changes in the methylation profile have been implicated as one of the mechanisms through which therapy resistance develops. Therefore, we aimed to identify methylation loci associated with endocrine therapy resistance. METHODS: We used genome-wide DNA methylation profiles of primary ER+/HER2- tumours from The Cancer Genome Atlas in combination with curated data on survival and treatment to predict development of endocrine resistance. Association of individual DNA methylation markers with survival was assessed using Cox proportional hazards models in a cohort of ER+/HER2- tumours (N = 552) and two sub-cohorts corresponding to the endocrine treatment (AI or TAM) that patients received (N = 210 and N = 172, respectively). We also identified multivariable methylation signatures associated with survival using Cox proportional hazards models with elastic net regularization. Individual markers and multivariable signatures were compared with DNA methylation profiles generated in a time course experiment using the T47D ER+ breast cancer cell line treated with tamoxifen or deprived from estrogen. RESULTS: We identified 134, 5 and 1 CpGs for which DNA methylation is significantly associated with survival in the ER+/HER2-, TAM and AI cohorts respectively. Multi-locus signatures consisted of 203, 36 and 178 CpGs and showed a large overlap with the corresponding single-locus signatures. The methylation signatures were associated with survival independently of tumour stage, age, AI treatment, and luminal status. The single-locus signature for the TAM cohort was conserved among the loci that were differentially methylated in endocrine-resistant T47D cells. Similarly, multi-locus signatures for the ER+/HER2- and AI cohorts were conserved in endocrine-resistant T47D cells. Also at the gene set level, several sets related to endocrine therapy and resistance were enriched in both survival and T47D signatures. CONCLUSIONS: We identified individual and multivariable DNA methylation markers associated with therapy resistance independently of luminal status. Our results suggest that these markers identified from primary tumours prior to endocrine treatment are associated with development of endocrine resistance.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Antineoplásicos Hormonales/uso terapéutico , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/mortalidad , Carcinoma Ductal de Mama/patología , Estudios de Cohortes , Islas de CpG/genética , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Análisis de Supervivencia , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
14.
Oncogene ; 37(17): 2251-2269, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29391599

RESUMEN

Trastuzumab-refractory, HER2 (human epidermal growth factor receptor 2)-positive breast cancer is commonly treated with trastuzumab emtansine (T-DM1), an antibody-drug conjugate of trastuzumab and the microtubule-targeting agent, DM1. However, drug response reduces greatly over time due to acquisition of resistance whose molecular mechanisms are mostly unknown. Here, we uncovered a novel mechanism of resistance against T-DM1 by combining whole transcriptome sequencing (RNA-Seq), proteomics and a targeted small interfering RNA (siRNA) sensitization screen for molecular level analysis of acquired and de novo T-DM1-resistant models of HER2-overexpressing breast cancer. We identified Polo-like kinase 1 (PLK1), a mitotic kinase, as a resistance mediator whose genomic as well as pharmacological inhibition restored drug sensitivity. Both acquired and de novo resistant models exhibited synergistic growth inhibition upon combination of T-DM1 with a selective PLK1 inhibitor, volasertib, at a wide concentration range of the two drugs. Mechanistically, T-DM1 sensitization upon PLK1 inhibition with volasertib was initiated by a spindle assembly checkpoint (SAC)-dependent mitotic arrest, leading to caspase activation, followed by DNA damage through CDK1-dependent phosphorylation and inactivation of Bcl-2/xL. Furthermore, we showed that Ser70 phosphorylation of Bcl-2 directly regulates apoptosis by disrupting the binding to and sequestration of the pro-apoptotic protein Bim. Importantly, T-DM1 resistance signature or PLK1 expression correlated with cell cycle progression and DNA repair, and predicted a lower sensitivity to taxane/trastuzumab combination in HER2-positive breast cancer patients. Finally, volasertib in combination with T-DM1 greatly synergized in models of T-DM1 resistance in terms of growth inhibition both in three dimensional (3D) cell culture and in vivo. Altogether, our results provide promising pre-clinical evidence for potential testing of T-DM1/volasertib combination in T-DM1 refractory HER2-positive breast cancer patients for whom there is currently no treatment available.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Maitansina/análogos & derivados , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pteridinas/farmacología , Trastuzumab/uso terapéutico , Ado-Trastuzumab Emtansina , Animales , Neoplasias de la Mama/metabolismo , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Humanos , Maitansina/uso terapéutico , Ratones , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Quinasa Tipo Polo 1
15.
Oncoimmunology ; 7(2): e1393596, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29308326

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDA) is characterized by a complex tumor microenvironment that supports its progression, aggressiveness and resistance to therapies. The delicate interplay between cancer and immune cells creates the conditions for PDA development, particularly due to the functional suppression of T cell anti-tumor effector activity. However, some of the mechanisms involved in this process are still poorly understood. In this study, we analyze whether the functional and epigenetic profile of T cells that infiltrate PDA is modulated by the microenvironment, and in particular by tumor-associated macrophages (TAMs). CD4 and CD8 T cells obtained from mice orthotopically injected with syngeneic PDA cells, and untreated or treated with Trabectedin, a cytotoxic drug that specifically targets TAMs, were sorted and analyzed by flow cytometry and characterized for their epigenetic profile. Assessment of cytokine production and the epigenetic profile of genes coding for IL10, T-bet and PD1 revealed that T cells that infiltrated PDA displayed activated Il10 promoter and repressed T-bet activity, in agreement with their regulatory phenotype (IL10high/IFNγlow, PD1high). By contrast, in Trabectedin-treated mice, PDA-infiltrating T cells displayed repressed Il10 and Pdcd1 and activated T-bet promoter activity, in accordance with their anti-tumor effector phenotype (IL10low/IFNγhigh), indicating a key role of TAMs in orchestrating functions of PDA-infiltrating T cells by modulating their epigenetic profile towards a pro-tumoral phenotype. These results suggest the targeting of TAMs as an efficient strategy to obtain an appropriate T cell anti-tumor immune response and open new potential combinations for PDA treatment.

16.
J Hematol Oncol ; 10(1): 16, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086938

RESUMEN

BACKGROUND: We have previously shown that in pancreatic ductal adenocarcinoma (PDA) cells, the glycolytic enzyme alpha-enolase (ENO1) also acts as a plasminogen receptor and promotes invasion and metastasis formation. Moreover, ENO1 silencing in PDA cells induces oxidative stress, senescence and profoundly modifies PDA cell metabolism. Although anti-ENO1 antibody inhibits PDA cell migration and invasion, little is known about the role of ENO1 in regulating cell-cell and cell-matrix contacts. We therefore investigated the effect of ENO1 silencing on the modulation of cell morphology, adhesion to matrix substrates, cell invasiveness, and metastatic ability. METHODS: The membrane and cytoskeleton modifications that occurred in ENO1-silenced (shENO1) PDA cells were investigated by a combination of confocal microscopy and atomic force microscopy (AFM). The effect of ENO1 silencing was then evaluated by phenotypic and functional experiments to identify the role of ENO1 in adhesion, migration, and invasion, as well as in senescence and apoptosis. The experimental results were then validated in a mouse model. RESULTS: We observed a significant increase in the roughness of the cell membrane due to ENO1 silencing, a feature associated with an impaired ability to migrate and invade, along with a significant downregulation of proteins involved in cell-cell and cell-matrix adhesion, including alpha v/beta 3 integrin in shENO1 PDA cells. These changes impaired the ability of shENO1 cells to adhere to Collagen I and IV and Fibronectin and caused an increase in RGD-independent adhesion to vitronectin (VN) via urokinase plasminogen activator receptor (uPAR). Binding of uPAR to VN triggers integrin-mediated signals, which result in ERK1-2 and RAC activation, accumulation of ROS, and senescence. In shENO1 cancer cells, the use of an anti-uPAR antibody caused significant reduction of ROS production and senescence. Overall, a decrease of in vitro and in vivo cell migration and invasion of shENO1 PDA cells was observed. CONCLUSION: These data demonstrate that ENO1 promotes PDA survival, migration, and metastasis through cooperation with integrins and uPAR.


Asunto(s)
Biomarcadores de Tumor/fisiología , Adhesión Celular , Proteínas de Unión al ADN/fisiología , Integrina alfaVbeta3/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Neoplasias Pancreáticas/patología , Fosfopiruvato Hidratasa/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Forma de la Célula , Senescencia Celular , Proteínas de Unión al ADN/genética , Expresión Génica , Silenciador del Gen , Humanos , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Integrinas/fisiología , Ratones , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/metabolismo , Fosfopiruvato Hidratasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/fisiología , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...