Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328249

RESUMEN

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting O 2 ●- to O 2 and H 2 O 2 with proton-coupled electron transfers (PCETs). Since changes in mitochondrial H 2 O 2 concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, H 2 O 2 . A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the underlying mechanism, we combined neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states to reveal the all-atom structures and electronic configuration of the metal. The data identifies the product-inhibited complex for the first time and a PCET mechanism of inhibition is constructed.

2.
Genes (Basel) ; 15(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38397158

RESUMEN

Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN , Proteína de Replicación A , Humanos , ADN/metabolismo , Reparación del ADN/genética , ADN de Cadena Simple , Fosforilación , Proteína de Replicación A/metabolismo
3.
Mol Cancer Ther ; 23(1): 14-23, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37756579

RESUMEN

Geranylgeranyl diphosphate synthase (GGDPS), the source of the isoprenoid donor in protein geranylgeranylation reactions, has become an attractive target for anticancer therapy due to the reliance of cancers on geranylgeranylated proteins. Current GGDPS inhibitor development focuses on optimizing the drug-target enzyme interactions of nitrogen-containing bisphosphonate-based drugs. To advance GGDPS inhibitor development, understanding the enzyme structure, active site, and ligand/product interactions is essential. Here we provide a comprehensive structure-focused review of GGDPS. We reviewed available yeast and human GGDPS structures and then used AlphaFold modeling to complete unsolved structural aspects of these models. We delineate the elements of higher-order structure formation, product-substrate binding, the electrostatic surface, and small-molecule inhibitor binding. With the rise of structure-based drug design, the information provided here will serve as a valuable tool for rationally optimizing inhibitor selectivity and effectiveness.


Asunto(s)
Inhibidores Enzimáticos , Neoplasias , Humanos , Farnesiltransferasa/química , Farnesiltransferasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/química , Terpenos/química , Terpenos/farmacología , Prenilación de Proteína , Neoplasias/tratamiento farmacológico
4.
Bioorg Med Chem Lett ; 94: 129465, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669721

RESUMEN

Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting.


Asunto(s)
Mitoxantrona , Humanos , Masculino , ADN-Topoisomerasas de Tipo II , Proteínas de Unión al ADN , Mitoxantrona/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Proteoma , Proteómica , Sondas Moleculares/química , Sondas Moleculares/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Femenino
5.
NPJ Microgravity ; 9(1): 39, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270576

RESUMEN

The NASA mission Perfect Crystals used the microgravity environment on the International Space Station (ISS) to grow crystals of human manganese superoxide dismutase (MnSOD)-an oxidoreductase critical for mitochondrial vitality and human health. The mission's overarching aim is to perform neutron protein crystallography (NPC) on MnSOD to directly visualize proton positions and derive a chemical understanding of the concerted proton electron transfers performed by the enzyme. Large crystals that are perfect enough to diffract neutrons to sufficient resolution are essential for NPC. This combination, large and perfect, is hard to achieve on Earth due to gravity-induced convective mixing. Capillary counterdiffusion methods were developed that provided a gradient of conditions for crystal growth along with a built-in time delay that prevented premature crystallization before stowage on the ISS. Here, we report a highly successful and versatile crystallization system to grow a plethora of crystals for high-resolution NPC.

6.
bioRxiv ; 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37090570

RESUMEN

Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting. Highlights: An 8-step synthesis was used to generate a biotinylated-mitoxantrone probe (MXP).A pulldown of MXP demonstrated selectivity for RAD52, but not Replication Protein A.Western blot confirmed the identity of the isolated protein, RAD52.

7.
Vaccines (Basel) ; 11(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37112733

RESUMEN

The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain-Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV.

8.
J Biol Chem ; 299(1): 102762, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36463962

RESUMEN

Chlamydia trachomatis (ct) is the most reported bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Caseinolytic proteases (ClpP) from pathogenic bacteria are attractive antibiotic targets, particularly for bacterial species that form persister colonies with phenotypic resistance against common antibiotics. ClpP functions as a multisubunit proteolytic complex, and bacteria are eradicated when ClpP is disrupted. Although crucial for chlamydial development and the design of agents to treat chlamydia, the structures of ctClpP1 and ctClpP2 have yet to be solved. Here, we report the first crystal structure of full-length ClpP2 as an inactive homotetradecamer in a complex with a candidate antibiotic at 2.66 Å resolution. The structure details the functional domains of the ClpP2 protein subunit and includes the handle domain, which is integral to proteolytic activation. In addition, hydrogen-deuterium exchange mass spectroscopy probed the dynamics of ClpP2, and molecular modeling of ClpP1 predicted an assembly with ClpP2. By leveraging previous enzymatic experiments, we constructed a model of ClpP2 activation and its interaction with the protease subunits ClpP1 and ClpX. The structural information presented will be relevant for future rational drug design against these targets and will lead to a better understanding of ClpP complex formation and activation within this important human pathogen.


Asunto(s)
Chlamydia trachomatis , Endopeptidasa Clp , Modelos Moleculares , Humanos , Antibacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/enzimología , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Cristalización , Dominios Proteicos
9.
Rev Sci Instrum ; 93(6): 064103, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778015

RESUMEN

Revealing the positions of all the atoms in large macromolecules is powerful but only possible with neutron macromolecular crystallography (NMC). Neutrons provide a sensitive and gentle probe for the direct detection of protonation states at near-physiological temperatures and clean of artifacts caused by x rays or electrons. Currently, NMC use is restricted by the requirement for large crystal volumes even at state-of-the-art instruments such as the macromolecular neutron diffractometer at the Spallation Neutron Source. EWALD's design will break the crystal volume barrier and, thus, open the door for new types of experiments, the study of grand challenge systems, and the more routine use of NMC in biology. EWALD is a single crystal diffractometer capable of collecting data from macromolecular crystals on orders of magnitude smaller than what is currently feasible. The construction of EWALD at the Second Target Station will cause a revolution in NMC by enabling key discoveries in the biological, biomedical, and bioenergy sciences.


Asunto(s)
Difracción de Neutrones , Neutrones , Cristalografía , Electrones , Sustancias Macromoleculares/química
10.
Protein Sci ; 31(5): e4300, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481636

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 infection has led to socio-economic shutdowns and the loss of over 5 million lives worldwide. There is a need for the identification of therapeutic targets to treat COVID-19. SARS-CoV-2 spike is a target of interest for the development of therapeutic targets. We developed a robust SARS-CoV-2 S spike expression and purification protocol from insect cells and studied four recombinant SARS-CoV-2 spike protein constructs based on the original SARS-CoV-2 sequence using a baculovirus expression system: a spike protein receptor-binding domain that includes the SD1 domain (RBD) coupled to a fluorescent tag (S-RBD-eGFP), spike ectodomain coupled to a fluorescent tag (S-Ecto-eGFP), spike ectodomain with six proline mutations and a foldon domain (S-Ecto-HexaPro(+F)), and spike ectodomain with six proline mutations without the foldon domain (S-Ecto-HexaPro(-F)). We tested the yield of purified protein expressed from the insect cell lines Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tni) and compared it to previous research using mammalian cell lines to determine changes in protein yield. We demonstrated quick and inexpensive production of functional glycosylated spike protein of high purity capable of recognizing and binding to the angiotensin converting enzyme 2 (ACE2) receptor. To further confirm functionality, we demonstrate binding of eGFP fused construct of the spike ectodomain (S-Ecto-eGFP) to surface ACE2 receptors on lung epithelial cells by flow cytometry analysis and show that it can be decreased by means of receptor manipulation (blockade or downregulation).


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Animales , Humanos , Insectos/metabolismo , Mamíferos , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Prolina , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
11.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476515

RESUMEN

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Asunto(s)
Quinasa 1 de Quinasa de Quinasa MAP , Neoplasias Pancreáticas , Humanos , Quinasa I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas , Neoplasias Pancreáticas
12.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 1): 8-16, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34981770

RESUMEN

Structurally identifying the enzymatic intermediates of redox proteins has been elusive due to difficulty in resolving the H atoms involved in catalysis and the susceptibility of ligand complexes to photoreduction from X-rays. Cryotrapping ligands for neutron protein crystallography combines two powerful tools that offer the advantage of directly identifying hydrogen positions in redox-enzyme intermediates without radiolytic perturbation of metal-containing active sites. However, translating cryogenic techniques from X-ray to neutron crystallography is not straightforward due to the large crystal volumes and long data-collection times. Here, methods have been developed to visualize the evasive peroxo complex of manganese superoxide dismutase (MnSOD) so that all atoms, including H atoms, could be visualized. The subsequent cryocooling and ligand-trapping methods resulted in neutron data collection to 2.30 Šresolution. The P6122 crystal form of MnSOD is challenging because it has some of the largest unit-cell dimensions (a = b = 77.8, c = 236.8 Å) ever studied using high-resolution cryo-neutron crystallography. The resulting neutron diffraction data permitted the visualization of a dioxygen species bound to the MnSOD active-site metal that was indicative of successful cryotrapping.


Asunto(s)
Difracción de Neutrones , Peróxidos , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Superóxido Dismutasa/química
13.
Mol Cell Biol ; 42(2): e0052421, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34928169

RESUMEN

Loss of RAD52 is synthetically lethal in BRCA-deficient cells, owing to its role in backup homologous recombination (HR) repair of DNA double-strand breaks (DSBs). In HR in mammalian cells, DSBs are processed to single-stranded DNA (ssDNA) overhangs, which are then bound by replication protein A (RPA). RPA is exchanged for RAD51 by mediator proteins: in mammals, BRCA2 is the primary mediator; however, RAD52 provides an alternative mediator pathway in BRCA-deficient cells. RAD51 stimulates strand exchange between homologous DNA duplexes, a critical step in HR. RPA phosphorylation and dephosphorylation are important for HR, but its effect on RAD52 mediator function is unknown. Here, we show that RPA phosphorylation is required for RAD52 to salvage HR in BRCA-deficient cells. In BRCA2-depleted human cells, in which the only available mediator pathway is RAD52 dependent, the expression of a phosphorylation-deficient RPA mutant reduced HR. Furthermore, RPA-phosphomutant cells showed reduced association of RAD52 with RAD51. Interestingly, there was no effect of RPA phosphorylation on RAD52 recruitment to repair foci. Finally, we show that RPA phosphorylation does not affect RAD52-dependent ssDNA annealing. Thus, although RAD52 can be recruited independently of RPA's phosphorylation status, RPA phosphorylation is required for RAD52's association with RAD51 and its subsequent promotion of RAD52-mediated HR.


Asunto(s)
Reparación del ADN/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Estafilocócica A/metabolismo , Reparación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Humanos , Fosforilación , Proteína Recombinante y Reparadora de ADN Rad52/genética , Reparación del ADN por Recombinación/genética , Saccharomyces cerevisiae/metabolismo
14.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 790-798, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34076592

RESUMEN

Two commensurately modulated structures (PDB entries 4n3e and 6sjj) were solved using translational noncrystallographic symmetry (tNCS). The data required the use of large supercells, sevenfold and ninefold, respectively, to properly index the reflections. Commensurately modulated structures can be challenging to solve. Molecular-replacement software such as Phaser can detect tNCS and either handle it automatically or, for more challenging situations, allow the user to enter a tNCS vector, which the software then uses to place the components. Although this approach has been successful in solving these types of challenging structures, it does not make it easy to understand the underlying modulation in the structure or how these two structures are related. An alternate view of this problem is that the atoms and associated parameters are following periodic atomic modulation functions (AMFs) in higher dimensional space, and what is being observed in these supercells are the points where these higher dimensional AMFs intersect physical 3D space. In this case, the two 3D structures, with a sevenfold and a ninefold superstructure, seem to be quite different. However, describing those structures within the higher dimensional superspace approach makes a strong case that they are closely related, as they show very similar AMFs and can be described with one unique (3+1)D structure, i.e. they are two different 3D intersections of the same (3+1)D structure.


Asunto(s)
Modelos Moleculares , Proteínas/química , Programas Informáticos , Conformación Proteica
15.
Protein Sci ; 30(9): 1983-1990, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34191362

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS-CoV-2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing. The use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) bypasses this issue by pre-expressing a sulfhydryl oxidase and a disulfide isomerase, allowing the recombinant protein to be correctly folded with disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce an active RBD in bacteria that is capable of recognizing and binding to the ACE2 (angiotensin-converting enzyme) receptor as well as antibodies in COVID-19 patient sera.


Asunto(s)
SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
16.
Nat Commun ; 12(1): 2079, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824320

RESUMEN

Human manganese superoxide dismutase is a critical oxidoreductase found in the mitochondrial matrix. Concerted proton and electron transfers are used by the enzyme to rid the mitochondria of O2•-. The mechanisms of concerted transfer enzymes are typically unknown due to the difficulties in detecting the protonation states of specific residues and solvent molecules at particular redox states. Here, neutron diffraction of two redox-controlled manganese superoxide dismutase crystals reveal the all-atom structures of Mn3+ and Mn2+ enzyme forms. The structures deliver direct data on protonation changes between oxidation states of the metal. Observations include glutamine deprotonation, the involvement of tyrosine and histidine with altered pKas, and four unusual strong-short hydrogen bonds, including a low barrier hydrogen bond. We report a concerted proton and electron transfer mechanism for human manganese superoxide dismutase from the direct visualization of active site protons in Mn3+ and Mn2+ redox states.


Asunto(s)
Electrones , Protones , Superóxido Dismutasa/metabolismo , Aminoácidos/metabolismo , Aniones , Biocatálisis , Dominio Catalítico , Glutamina/metabolismo , Humanos , Ligandos , Neutrones , Multimerización de Proteína , Solventes , Superóxido Dismutasa/química
17.
PLoS One ; 16(3): e0248941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33784323

RESUMEN

Synthetic lethality is a successful strategy employed to develop selective chemotherapeutics against cancer cells. Inactivation of RAD52 is synthetically lethal to homologous recombination (HR) deficient cancer cell lines. Replication protein A (RPA) recruits RAD52 to repair sites, and the formation of this protein-protein complex is critical for RAD52 activity. To discover small molecules that inhibit the RPA:RAD52 protein-protein interaction (PPI), we screened chemical libraries with our newly developed Fluorescence-based protein-protein Interaction Assay (FluorIA). Eleven compounds were identified, including FDA-approved drugs (quinacrine, mitoxantrone, and doxorubicin). The FluorIA was used to rank the compounds by their ability to inhibit the RPA:RAD52 PPI and showed mitoxantrone and doxorubicin to be the most effective. Initial studies using the three FDA-approved drugs showed selective killing of BRCA1-mutated breast cancer cells (HCC1937), BRCA2-mutated ovarian cancer cells (PE01), and BRCA1-mutated ovarian cancer cells (UWB1.289). It was noteworthy that selective killing was seen in cells known to be resistant to PARP inhibitors (HCC1937 and UWB1 SYr13). A cell-based double-strand break (DSB) repair assay indicated that mitoxantrone significantly suppressed RAD52-dependent single-strand annealing (SSA) and mitoxantrone treatment disrupted the RPA:RAD52 PPI in cells. Furthermore, mitoxantrone reduced radiation-induced foci-formation of RAD52 with no significant activity against RAD51 foci formation. The results indicate that the RPA:RAD52 PPI could be a therapeutic target for HR-deficient cancers. These data also suggest that RAD52 is one of the targets of mitoxantrone and related compounds.


Asunto(s)
Recombinación Homóloga , Neoplasias/metabolismo , Neoplasias/patología , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína de Replicación A/metabolismo , Apoptosis/efectos de los fármacos , Proteína BRCA1/deficiencia , Proteína BRCA1/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Reparación del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Recombinación Homóloga/efectos de los fármacos , Humanos , Mitoxantrona/farmacología , Unión Proteica/efectos de los fármacos , Quinacrina/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología
20.
bioRxiv ; 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32995771

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The initial interaction between Transmembrane Serine Protease 2 (TMPRSS2) primed SARS-CoV-2 spike (S) protein and host cell receptor angiotensin-converting enzyme 2 (ACE-2) is a pre-requisite step for this novel coronavirus pathogenesis. Here, we expressed a GFP-tagged SARS-CoV-2 S-Ectodomain in Tni insect cells. That contained sialic acid-enriched N- and O-glycans. Surface resonance plasmon (SPR) and Luminex assay showed that the purified S-Ectodomain binding to human ACE-2 and immunoreactivity with COVID-19 positive samples. We demonstrate that bromelain (isolated from pineapple stem and used as a dietary supplement) treatment diminishes the expression of ACE-2 and TMPRSS2 in VeroE6 cells and dramatically lowers the expression of S-Ectodomain. Importantly, bromelain treatment reduced the interaction between S-Ectodomain and VeroE6 cells. Most importantly, bromelain treatment significantly diminished the SARS-CoV-2 infection in VeroE6 cells. Altogether, our results suggest that bromelain or bromelain rich pineapple stem may be used as an antiviral against COVID-19. HIGHLIGHTS: Bromelain inhibits / cleaves the expression of ACE-2 and TMPRSS2Bromelain cleaves / degrades SARS-CoV-2 spike proteinBromelain inhibits S-Ectodomain binding and SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...