Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(14): 4621-4633, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37227473

RESUMEN

As animal cells cannot produce oxygen, erythrocytes are responsible for gas interchange, being able to capture and deliver oxygen upon tissue request. Interestingly, several other cells in nature produce oxygen by photosynthesis, raising the question of whether they could circulate within the vascular networks, acting as an alternative source for oxygen delivery. To address this long-term goal, here some physical and mechanical features of the photosynthetic microalga Chlamydomona reinhardtii were studied and compared with erythrocytes, revealing that both exhibit similar size and rheological properties. Moreover, key biocompatibility aspects of the microalgae were evaluated in vitro and in vivo, showing that C. reinhardtii can be co-cultured with endothelial cells, without affecting each other's morphology and viability. Moreover, short-term systemic perfusion of the microalgae showed a thoroughly intravascular distribution in mice. Finally, the systemic injection of high numbers of microalgae did not trigger deleterious responses in living mice. Altogether, this work provides key scientific insights to support the notion that photosynthetic oxygenation could be achieved by circulating microalgae, representing another important step towards human photosynthesis. KEY POINTS: • C. reinhardtii and endothelial cells are biocompatible in vitro. • C. reinhardtii distribute throughout the entire vasculature after mice perfusion. • C. reinhardtii do not trigger deleterious responses after injection in mice.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Animales , Humanos , Ratones , Células Endoteliales , Fotosíntesis , Oxígeno , Eritrocitos
2.
3.
Am J Physiol Heart Circ Physiol ; 321(6): H1083-H1095, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652985

RESUMEN

Nitric oxide (NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: 1) soluble guanylate cyclase-protein kinase G and 2) S-nitrosylation (NO-induced modification of free-thiol cysteines in proteins). S-nitrosylation affects phosphorylation, localization, and protein interactions. NO is classically described as a negative regulator of leukocyte adhesion to endothelial cells. However, agonists activating NO production induce a fast leukocyte adhesion, which suggests that NO might positively regulate leukocyte adhesion. We tested the hypothesis that eNOS-induced NO promotes leukocyte adhesion through the S-nitrosylation pathway. We stimulated leukocyte adhesion to endothelium in vitro and in vivo using tumor necrosis factor-α (TNF-α) as proinflammatory agonist. ICAM-1 changes were evaluated by immunofluorescence, subcellular fractionation, immunoprecipitation, and fluorescence recovery after photobleaching (FRAP). Protein kinase Cζ (PKCζ) activity and S-nitrosylation were evaluated by Western blot analysis and biotin switch method, respectively. TNF-α, at short times of stimulation, activated the eNOS S-nitrosylation pathway and caused leukocyte adhesion to endothelial cells in vivo and in vitro. TNF-α-induced NO led to changes in ICAM-1 at the cell surface, which are characteristic of clustering. TNF-α-induced NO also produced S-nitrosylation and phosphorylation of PKCζ, association of PKCζ with ICAM-1, and ICAM-1 phosphorylation. The inhibition of PKCζ blocked leukocyte adhesion induced by TNF-α. Mass spectrometry analysis of purified PKCζ identified cysteine 503 as the only S-nitrosylated residue in the kinase domain of the protein. Our results reveal a new eNOS S-nitrosylation-dependent mechanism that induces leukocyte adhesion and suggests that S-nitrosylation of PKCζ may be an important regulatory step in early leukocyte adhesion in inflammation.NEW & NOTEWORTHY Contrary to the well-established inhibitory role of NO in leukocyte adhesion, we demonstrate a positive role of nitric oxide in this process. We demonstrate that NO induced by eNOS after TNF-α treatment induces early leukocyte adhesion activating the S-nitrosylation pathway. Our data suggest that PKCζ S-nitrosylation may be a key step in this process.


Asunto(s)
Músculos Abdominales/irrigación sanguínea , Adhesión Celular , Células Endoteliales/efectos de los fármacos , Leucocitos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Línea Celular , Técnicas de Cocultivo , Células Endoteliales/enzimología , Activación Enzimática , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factores de Tiempo
5.
Front Bioeng Biotechnol ; 9: 796157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976984

RESUMEN

Oxygen is the key molecule for aerobic metabolism, but no animal cells can produce it, creating an extreme dependency on external supply. In contrast, microalgae are photosynthetic microorganisms, therefore, they are able to produce oxygen as plant cells do. As hypoxia is one of the main issues in organ transplantation, especially during preservation, the main goal of this work was to develop the first generation of perfusable photosynthetic solutions, exploring its feasibility for ex vivo organ preservation. Here, the microalgae Chlamydomonas reinhardtii was incorporated in a standard preservation solution, and key aspects such as alterations in cell size, oxygen production and survival were studied. Osmolarity and rheological features of the photosynthetic solution were comparable to human blood. In terms of functionality, the photosynthetic solution proved to be not harmful and to provide sufficient oxygen to support the metabolic requirement of zebrafish larvae and rat kidney slices. Thereafter, isolated porcine kidneys were perfused, and microalgae reached all renal vasculature, without inducing damage. After perfusion and flushing, no signs of tissue damage were detected, and recovered microalgae survived the process. Altogether, this work proposes the use of photosynthetic microorganisms as vascular oxygen factories to generate and deliver oxygen in isolated organs, representing a novel and promising strategy for organ preservation.

6.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751416

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal disease that causes cardiomyopathy and is associated with oxidative stress. In the heart, oxidative stress interferes with the location of connexin 43 (Cx43) to the intercalated discs causing its lateralization to the plasma membrane where Cx43 forms hemichannels. We tested the hypothesis that in DMD cardiomyopathy, increased oxidative stress is associated with the formation and activation of Cx43 hemichannels. For this, we used mdx mice as a DMD model and evaluated cardiac function, nitroso-redox changes and Cx43 hemichannels permeability. Mdx hearts presented increased NADPH oxidase-derived oxidative stress and increased Cx43 S-nitrosylation compared to controls. These redox changes were associated with increased Cx43 lateralization, decreased cardiac contractility and increased arrhythmic events. Pharmacological inhibition of NADPH oxidase using apocynin (one month) reduced systemic oxidative stress and reversed the aforementioned changes towards normal, except Cx43 lateralization. Opening of Cx43 hemichannels was blocked by apocynin treatment and by acute hemichannel blockade with carbenoxolone. NADPH oxidase inhibition also prevented the occurrence of apoptosis in mdx hearts and reversed the ventricular remodeling. These results show that NADPH oxidase activity in DMD is associated with S-nitrosylation and opening of Cx43 hemichannels. These changes lead to apoptosis and cardiac dysfunction and were prevented by NADPH oxidase inhibition.


Asunto(s)
Conexina 43/fisiología , Distrofia Muscular de Duchenne/metabolismo , Miocardio , Acetofenonas/farmacología , Animales , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos mdx , Miocardio/metabolismo , Miocardio/patología , NADPH Oxidasas/antagonistas & inhibidores , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
7.
Front Physiol ; 10: 988, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31440166

RESUMEN

Glioblastoma is a highly aggressive brain tumor, characterized by the formation of dysfunctional blood vessels and a permeable endothelial barrier. S-nitrosylation, a post-translational modification, has been identified as a regulator of endothelial function. In this work we explored whether S-nitrosylation induced by glioblastoma tumors regulates the endothelial function. As proof of concept, we observed that S-nitrosylation is present in the tumoral microenvironment of glioblastoma in two different animal models. Subsequently, we measured S nitrosylation and microvascular permeability in EAhy296 endothelial cells and in cremaster muscle. In vitro, conditioned medium from the human glioblastoma cell line U87 activates endothelial nitric oxide synthase, causes VE-cadherin- S-nitrosylation and induces hyperpermeability. Blocking Interleukin-8 (IL-8) in the conditioned medium inhibited S-nitrosylation of VE-cadherin and hyperpermeability. Recombinant IL-8 increased endothelial permeability by activating eNOS, S-nitrosylation of VE-cadherin and p120, internalization of VE-cadherin and disassembly of adherens junctions. In vivo, IL-8 induced S-nitrosylation of VE-cadherin and p120 and conditioned medium from U87 cells caused hyperpermeability in the mouse cremaster muscle. We conclude that eNOS signaling induced by glioma cells-secreted IL-8 regulates endothelial barrier function in the context of glioblastoma involving S-nitrosylation of VE-cadherin and p120. Our results suggest that inhibiting S-nitrosylation may be an effective way to control and/or block damage to the endothelial barrier and prevent cancer progression.

8.
Carcinogenesis ; 40(2): 313-323, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30624618

RESUMEN

The permeability of endothelial cells is regulated by the stability of the adherens junctions, which is highly sensitive to kinase-mediated phosphorylation and endothelial nitric oxide synthase (eNOS)-mediated S-nitrosylation of its protein components. Solid tumors can produce a variety of factors that stimulate these signaling pathways leading to endothelial cell hyperpermeability. This generates stromal conditions that facilitate tumoral growth and dissemination. Galectin-8 (Gal-8) is overexpressed in several carcinomas and has a variety of cellular effects that can contribute to tumor pathogenicity, including angiogenesis. Here we explored whether Gal-8 has also a role in endothelial permeability. We show that recombinant Gal-8 activates eNOS, induces S-nitrosylation of p120-catenin (p120) and dissociation of adherens junction, leading to hyperpermeability of the human endothelial cell line EAhy926. This pathway involves focal-adhesion kinase (FAK) activation downstream of eNOS as a requirement for eNOS-mediated p120 S-nitrosylation. This suggests a reciprocal, yet little understood, regulation of phosphorylation and S-nitrosylation events acting upon adherens junction permeability. In addition, glutathione S-transferase (GST)-Gal-8 pull-down experiments and function-blocking ß1-integrin antibodies point to ß1-integrins as cell surface components involved in Gal-8-induced hyperpermeability. Endogenous Gal-8 secreted from the breast cancer cell line MCF-7 has similar hyperpermeability and signaling effects. Furthermore, the mouse cremaster model system showed that Gal-8 also activates eNOS, induces S-nitrosylation of adherens junction components and is an effective hyperpermeability agent in vivo. These results add endothelial permeability regulation by S-nitrosylation as a new function of Gal-8 that can potentially contribute to the pathogenicity of tumors overexpressing this lectin.


Asunto(s)
Uniones Adherentes/metabolismo , Galectinas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Células Endoteliales/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Glutatión Transferasa , Humanos , Células MCF-7 , Masculino , Ratones , Fosforilación/fisiología
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2949-2956, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890222

RESUMEN

Gestational diabetes mellitus (GDM) is a disease characterised by glucose intolerance and first diagnosed in pregnancy. This condition relates to an anomalous placental environment and aberrant placental vascular function. GDM-associated hyperglycaemia changes the placenta structure leading to abnormal development and functionality of this vital organ. Aiming to avoid the GDM-hyperglycaemia and its deleterious consequences in the mother, the foetus and newborn, women with GDM are firstly treated with a controlled diet therapy; however, some of the women fail to reach the recommended glycaemia values and therefore they are passed to the second line of treatment, i.e., insulin therapy. The several protocols available in the literature regarding insulin therapy are variable and not a clear consensus is yet reached. Insulin therapy restores maternal glycaemia, but this beneficial effect is not reflected in the foetus and newborn metabolism, suggesting that other factors than d-glucose may be involved in the pathophysiology of GDM. Worryingly, insulin therapy may cause alterations in the placenta and umbilical vessels as well as the foetus and newborn additional to those seen in pregnant women with GDM treated with diet. In this review, we summarised the variable information regarding indications and protocols for administration of the insulin therapy and the possible outcomes on the function and structure of the foetoplacental unit and the neonate parameters from women with GDM.


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Gestacional/tratamiento farmacológico , Macrosomía Fetal/prevención & control , Insulina/uso terapéutico , Placenta/efectos de los fármacos , Diabetes Gestacional/sangre , Diabetes Gestacional/dietoterapia , Femenino , Macrosomía Fetal/epidemiología , Macrosomía Fetal/etiología , Prueba de Tolerancia a la Glucosa , Humanos , Incidencia , Recién Nacido , Embarazo
10.
Am J Physiol Heart Circ Physiol ; 313(1): H66-H71, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526707

RESUMEN

We tested the hypothesis that platelet-activating factor (PAF) induces S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S-nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S-nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S-nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S-nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist.NEW & NOTEWORTHY Here, we demonstrate that S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S-nitrosylation of VASP contributes to the onset of endothelial permeability.


Asunto(s)
Permeabilidad Capilar/fisiología , Moléculas de Adhesión Celular/metabolismo , Cisteína/metabolismo , Células Endoteliales/fisiología , Proteínas de Microfilamentos/metabolismo , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Vasculitis/metabolismo , Animales , Capilares , Bovinos , Células Cultivadas , Humanos , Mediadores de Inflamación/metabolismo
11.
PLoS One ; 11(8): e0160813, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27529477

RESUMEN

S-nitrosylation of several Ca2+ regulating proteins in response to ß-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether ß-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (-25-30%) and basal S-nitrosylation of total proteins (-25-60%), RyR2, SERCA2 and LTCC (-60-75%). NOS-1 inhibition reduced (-25-40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (-85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) ß-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its inotropic effect.


Asunto(s)
Corazón/fisiología , Contracción Miocárdica , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptores Adrenérgicos beta/metabolismo , S-Nitrosotioles/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Corazón/efectos de los fármacos , Isoproterenol/farmacología , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocardio/citología , Oxidación-Reducción/efectos de los fármacos , Fosforilación/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 310(8): H1039-44, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921435

RESUMEN

The adherens junction complex, composed mainly of vascular endothelial (VE)-cadherin, ß-catenin, p120, and γ-catenin, is the main element of the endothelial barrier in postcapillary venules.S-nitrosylation of ß-catenin and p120 is an important step in proinflammatory agents-induced hyperpermeability. We investigated in vitro and in vivo whether or not VE-cadherin isS-nitrosylated using platelet-activating factor (PAF) as agonist. We report that PAF-stimulates S-nitrosylation of VE-cadherin, which disrupts its association with ß-catenin. In addition, based on inhibition of nitric oxide production, our results strongly suggest that S-nitrosylation is required for VE-cadherin phosphorylation on tyrosine and for its internalization. Our results unveil an important mechanism to regulate phosphorylation of junctional proteins in association with S-nitrosylation.


Asunto(s)
Uniones Adherentes/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar , Vasos Coronarios/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Procesamiento Proteico-Postraduccional , Vénulas/metabolismo , Uniones Adherentes/efectos de los fármacos , Animales , Transporte Biológico , Permeabilidad Capilar/efectos de los fármacos , Cateninas/metabolismo , Bovinos , Línea Celular , Vasos Coronarios/efectos de los fármacos , Cricetinae , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratones , Óxido Nítrico/metabolismo , Nitrosación , Fosforilación , Factor de Activación Plaquetaria/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal , Factores de Tiempo , Tirosina , beta Catenina/metabolismo , Catenina delta
13.
J Vasc Res ; 50(6): 498-511, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24217770

RESUMEN

BACKGROUND/AIMS: Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. METHODS: In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2-10 ml/min) on nitric oxide (NO) production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca(2+). RESULTS: Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3-5-min) that peaked during the first 15 s, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation and dissociation from Cav-1 depended on extracellular Ca(2+), while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. CONCLUSIONS: In intact resistance vessels, changes in flow induce NO production by transient Ca(2+)-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca(2+)-independent PI3K-Akt-mediated phosphorylation.


Asunto(s)
Arterias Mesentéricas/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Resistencia Vascular , Animales , Velocidad del Flujo Sanguíneo , Calcio/metabolismo , Caveolina 1/metabolismo , Activación Enzimática , Masculino , Mecanotransducción Celular , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional , Serina , Circulación Esplácnica , Estrés Mecánico , Factores de Tiempo
14.
Neuropharmacology ; 75: 594-603, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23583931

RESUMEN

During repetitive stimulation of skeletal muscle, extracellular ATP levels raise, activating purinergic receptors, increasing Ca2+ influx, and enhancing contractile force, a response called potentiation. We found that ATP appears to be released through pannexin1 hemichannels (Panx1 HCs). Immunocytochemical analyses and function were consistent with pannexin1 localization to T-tubules intercalated with dihydropyridine and ryanodine receptors in slow (soleus) and fast (extensor digitorum longus, EDL) muscles. Isolated myofibers took up ethidium (Etd+) and released small molecules (as ATP) during electrical stimulation. Consistent with two glucose uptake pathways, induced uptake of 2-NBDG, a fluorescent glucose derivative, was decreased by inhibition of HCs or glucose transporter (GLUT4), and blocked by dual blockade. Adult skeletal muscles apparently do not express connexins, making it unlikely that connexin hemichannels contribute to the uptake and release of small molecules. ATP release, Etd+ uptake, and potentiation induced by repetitive electrical stimulation were blocked by HC blockers and did not occur in muscles of pannexin1 knockout mice. MRS2179, a P2Y1R blocker, prevented potentiation in EDL, but not soleus muscles, suggesting that in fast muscles ATP activates P2Y1 but not P2X receptors. Phosphorylation on Ser and Thr residues of pannexin1 was increased during potentiation, possibly mediating HC opening. Opening of Panx1 HCs during repetitive activation allows efflux of ATP, influx of glucose and possibly Ca2+ too, which are required for potentiation of contraction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.


Asunto(s)
Adenosina Trifosfato/metabolismo , Conexinas/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Potenciales de Acción/efectos de los fármacos , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Conexinas/antagonistas & inhibidores , Conexinas/genética , Desoxiglucosa/análogos & derivados , Desoxiglucosa/metabolismo , Etidio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Miosinas/metabolismo , Ácidos Oléicos/farmacología , Fosforilación/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Ratas Sprague-Dawley , Serina/genética , Serina/metabolismo
15.
J Diabetes Res ; 2013: 593672, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24416726

RESUMEN

Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects.


Asunto(s)
Antioxidantes/uso terapéutico , Aporfinas/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Animales , Células Cultivadas , Nefropatías Diabéticas/fisiopatología , Evaluación Preclínica de Medicamentos , Pruebas de Función Renal , Masculino , Peumus , Extractos Vegetales/uso terapéutico , Ratas , Ratas Sprague-Dawley
16.
Circ Res ; 111(5): 553-63, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22777005

RESUMEN

RATIONALE: Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of endothelial nitric oxide synthase (eNOS) to cytosol and stimulation of eNOS-derived nitric oxide signaling cascade. The mechanisms by which nitric oxide signaling regulates permeability at adherens junctions are still incompletely understood. OBJECTIVE: We explored the hypothesis that PAF stimulates hyperpermeability via S-nitrosation (SNO) of adherens junction proteins. METHODS AND RESULTS: We measured PAF-stimulated SNO of ß-catenin and p120-catenin (p120) in 3 cell lines: ECV-eNOSGFP, EAhy926 (derived from human umbilical vein), and postcapillary venular endothelial cells (derived from bovine heart endothelium) and in the mouse cremaster muscle in vivo. SNO correlated with diminished abundance of ß-catenin and p120 at the adherens junction and with hyperpermeability. Tumor necrosis factor-α increased nitric oxide production and caused similar increase in SNO as PAF. To ascertain the importance of eNOS subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced SNO of ß-catenin and p120 and significantly diminished association between these proteins in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Inhibitors of nitric oxide production and of SNO blocked PAF-induced SNO and hyperpermeability, whereas inhibition of the cGMP pathway had no effect. Mass spectrometry analysis of purified p120 identified cysteine 579 as the main S-nitrosated residue in the region that putatively interacts with vascular endothelial-cadherin. CONCLUSIONS: Our results demonstrate that agonist-induced SNO contributes to junctional membrane protein changes that enhance endothelial permeability.


Asunto(s)
Uniones Adherentes/metabolismo , Permeabilidad Capilar/fisiología , Cateninas/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo , Secuencia de Aminoácidos , Animales , Permeabilidad Capilar/efectos de los fármacos , Cateninas/genética , Bovinos , Proteínas Fluorescentes Verdes/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitrosación/fisiología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Transducción de Señal/efectos de los fármacos , Vénulas/citología , Catenina delta
17.
Am J Physiol Heart Circ Physiol ; 295(3): H1056-H1066, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18599597

RESUMEN

To assess the hypothesis that gap junctions (GJs) participate on leukocyte-endothelium interactions in the inflammatory response, we compared leukocyte adhesion and transmigration elicited by cytokine stimulation in the presence or absence of GJ blockers in the hamster cheek pouch and also in the cremaster muscle of wild-type (WT) and endothelium-specific connexin 43 (Cx43) null mice (Cx43e(-/-)). In the cheek pouch, topical tumor necrosis factor-alpha (TNF-alpha; 150 ng/ml, 15 min) caused a sustained increment in the number of leukocytes adhered to venular endothelium (LAV) and located at perivenular regions (LPV). Superfusion with the GJ blockers 18-alpha-glycyrrhetinic acid (AGA; 75 microM) or 18-beta-glycyrrhetinic acid (50 microM) abolished the TNF-alpha-induced increase in LAV and LPV; carbenoxolone (75 microM) or oleamide (100 microM) reduced LAV by 50 and 75%, respectively, and LPV to a lesser extent. None of these GJ blockers modified venular diameter, blood flow, or leukocyte rolling. In contrast, glycyrrhizin (75 microM), a non-GJ blocker analog of AGA, was devoid of effect. Interestingly, when AGA was removed 90 min after TNF-alpha stimulation, LAV started to rise at a similar rate as in control. Conversely, application of AGA 90 min after TNF-alpha reduced the number of previously adhered cells. In WT mice, intrascrotal injection of TNF-alpha (0.5 microg/0.3 ml) increased LAV (fourfold) and LPV (threefold) compared with saline-injected controls. In contrast to the observations in WT animals, TNF-alpha stimulation did not increase LAV or LPV in Cx43e(-/-) mice. These results demonstrate an important role for GJ communication in leukocyte adhesion and transmigration during acute inflammation in vivo and further suggest that endothelial Cx43 is key in these processes.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Citocinas/farmacología , Endotelio Vascular/citología , Uniones Comunicantes/fisiología , Leucocitos/efectos de los fármacos , Animales , Movimiento Celular , Conexina 43/genética , Conexina 43/fisiología , Cricetinae , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Inflamación/patología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación/efectos de los fármacos , Mucosa Bucal/citología , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Radioisótopos de Sodio , Factor de Necrosis Tumoral alfa/farmacología
18.
Nitric Oxide ; 18(3): 157-67, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18023373

RESUMEN

The role of nitric oxide (NO) in cardiac contractility is complex and controversial. Several NO donors have been reported to cause positive or negative inotropism. NO can bind to guanylate cyclase, increasing cGMP production and activating PKG. NO may also directly S-nitrosylate cysteine residues of specific proteins. We used the isolated rat heart preparation to test the hypothesis that the differential inotropic effects depend on the degree of NO production and the signaling recruited. SNAP (S-nitroso-N-acetylpenicillamine), a NO donor, increased contractility at 0.1, 1 and 10 microM. This effect was independent of phospholamban phosphorylation, was not affected by PKA inhibition with H-89 (N-[2((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide), but it was abolished by the radical scavenger Tempol (4-hydroxy-[2,2,4,4]-tetramethyl-piperidine-1-oxyl). However, at 100 microM SNAP reduced contractility, effect reversed to positive inotropism by guanylyl cyclase blockade with ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), and abolished by PKG inhibition with KT5823, but not affected by Tempol. SNAP increased tissue cGMP at 100 microM, but not at lower concentrations. Consistently, a cGMP analog also reduced cardiac contractility. Finally, SNAP at 1 microM increased the level of S-nitrosylation of various cardiac proteins, including the ryanodine receptor. This study demonstrates the biphasic role for NO in cardiac contractility in a given preparation; furthermore, the differential effect is clearly ascribed to the signaling pathways involved. We conclude that although NO is highly diffusible, its output determines the fate of the messenger: low NO concentrations activate redox processes (S-nitrosylation), increasing contractility; while the cGMP-PKG pathway is activated at high NO concentrations, reducing contractility.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Contracción Miocárdica/fisiología , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Carbazoles/farmacología , GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Óxidos N-Cíclicos/farmacología , Masculino , Contracción Miocárdica/efectos de los fármacos , Óxido Nítrico/biosíntesis , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , S-Nitroso-N-Acetilpenicilamina/antagonistas & inhibidores , S-Nitroso-N-Acetilpenicilamina/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Marcadores de Spin
19.
Am J Physiol Heart Circ Physiol ; 291(3): H1058-64, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16679407

RESUMEN

Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10(-5) M, 10(-4) M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10(-7) M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation.


Asunto(s)
Permeabilidad Capilar/fisiología , Endotelio Vascular/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/fisiología , Acetilcolina/farmacología , Animales , Permeabilidad Capilar/efectos de los fármacos , Línea Celular , Cricetinae , Citosol/enzimología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Regulación Enzimológica de la Expresión Génica , Aparato de Golgi/enzimología , Humanos , Masculino , Mesocricetus , Óxido Nítrico/fisiología , Óxido Nítrico Sintasa de Tipo III/genética , Factor de Activación Plaquetaria/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
20.
J Physiol ; 574(Pt 1): 275-81, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16675496

RESUMEN

Nitric oxide (NO) is an important regulator of blood flow, but its role in permeability is still challenged. We tested in vivo the hypotheses that: (a) endothelial nitric oxide synthase (eNOS) is not essential for regulation of baseline permeability; (b) eNOS is essential for hyperpermeability responses in inflammation; and (c) molecular inhibition of eNOS with caveolin-1 scaffolding domain (AP-Cav) reduces eNOS-regulated hyperpermeability. We used eNOS-deficient (eNOS-/-) mice and their wild-type control as experimental animals, platelet-activating factor (PAF) at 10(-7) m as the test pro-inflammatory agent, and integrated optical intensity (IOI) as an index of microvascular permeability. PAF increased permeability in wild-type cremaster muscle from a baseline of 2.4 +/- 2.2 to a peak net value of 84.4 +/- 2.7 units, while the corresponding values in cremaster muscle of eNOS-/- mice were 1.0 +/- 0.3 and 15.6 +/- 7.7 units (P < 0.05). Similarly, PAF increased IOI in the mesentery of wild-type mice but much less in the mesentery of eNOS-/- mice. PAF increased IOI to comparable values in the mesenteries of wild-type mice and those lacking the gene for inducible NOS (iNOS). Administration of AP-Cav blocked the microvascular hyperpermeability responses to 10(-7) m PAF. We conclude that: (1) baseline permeability does not depend on eNOS; (2) eNOS and NO are integral elements of the signalling pathway for the hyperpermeability response to PAF; (3) iNOS does not affect either baseline permeability or hyperpermeability responses to PAF; and (4) caveolin-1 inhibits eNOS regulation of microvascular permeability in vivo. Our results establish eNOS as an important regulator of microvascular permeability in inflammation.


Asunto(s)
Permeabilidad Capilar , Caveolina 1/metabolismo , Músculo Esquelético/metabolismo , Miositis/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Animales , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...