Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 84(3): 033501, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23556815

RESUMEN

A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (∼100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036408, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19905231

RESUMEN

A magnetic deflection-energy analyzer and Faraday trap diagnostic have been used to make measurements of divergent deuterium anion flow in the inertial electrostatic confinement experiment at the University of Wisconsin-Madison (UW-IEC) [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, I. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)], a device to confine high-energy light ions in a spherically symmetric electrostatic potential well. Deuterium anion current densities as high as 8.5 microA/cm2 have been measured at the wall of the UW-IEC device, 40 cm from the surface of the device cathode with a detector assembly of admittance area 0.7 cm2. Energy spectra obtained using a magnetic deflection-energy analyzer diagnostic indicate the presence of D2(-), and D- ions produced through thermal electron attachment near the device cathode, as well as D- ions produced via charge-transfer processes between the anode and cathode of the device.


Asunto(s)
Deuterio/química , Modelos Químicos , Aniones , Simulación por Computador , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...