Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202308

RESUMEN

The effect of bovine serum albumin (BSA) upon interaction between CdTe QD functionalized by 3-Mercaptopropionic Acid (CdTe-3-MPA QD) and two water soluble porphyrins: positively charged meso-tetra methyl pyridyl porphyrin (TMPyP) and negatively charged meso-tetrakis(p-sulfonato-phenyl) porphyrin (TPPS4), was studied in function of pH using the steady-state and time resolved optical absorption and fluorescence spectroscopies. It was shown that, depending on the charge state of the components, interaction with albumin could either prevent the formation of the QD…PPh complex, form a mixed QD…PPh…BSA complex or not affect PPh complexation with QD at all. The obtained results may be of interest for application in photomedicine.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120063, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34153547

RESUMEN

The present work reports the effects of meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) aggregation on its excited states absorption spectra, triplet states quenching by molecular oxygen and singlet oxygen production. Experimental techniques such as optical absorption, Z-scan with a white light continuum source and the Laser Flash Photolysis were used to fulfil the study. J-aggregates possess reverse saturable absorption in the 505-660 nm spectral range with a peak centered close to 540 nm. These facts together with their fast relaxation time suggest that they can be employed as material for ultrafast optical limiting and switching. Even though aggregation reduces the porphyrin excited-state lifetimes and quantum yields, it does not reduce the probability of the contact between the quencher and the excited aggregate. Aggregation does not change the contribution of energy transfer mechanisms to triplet state quenching by molecular oxygen. The production of singlet oxygen, the intense absorption in the phototherapeutic window and the high efficiency of conversion of light energy into heat, allow consider J-aggregates as a theranostic agent for photomedicine. It is proposed to use J-aggregates for diagnostics by photoacoustic images and in combination with a near-infrared photodynamic/photothermal dual mode therapy, thus improving synergistically the therapeutic response.


Asunto(s)
Porfirinas , Oxígeno Singlete , Cinética , Oxígeno
3.
Eur Biophys J ; 48(8): 721-729, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31549191

RESUMEN

To infer changes in the photophysical properties of porphyrins due to complexation with albumin, a combination of Z-scan and conventional spectroscopic techniques was employed. We measured the characteristics of excited states of meso-tetrakis(sulfonatophenyl) porphyrin bound to bovine serum albumin and observed that the binding reduces the intersystem crossing quantum yield and increases the internal conversion one. A reverse saturable absorption process was observed in the nanosecond timescale. These results are important for prediction of the efficiency of this complex in medical and optical applications, because associating porphyrins to proteins enables better accumulation in tumors and improves its stability in optical devices, but at the same time, decreases its triplet quantum yield.


Asunto(s)
Porfirinas/química , Porfirinas/metabolismo , Albúmina Sérica Bovina/metabolismo , Animales , Bovinos , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica
4.
J Gen Virol ; 99(9): 1301-1306, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30058992

RESUMEN

In this work, the photodynamic efficiency of anionic meso-tetrakis sulfonophenyl (TPPS4), cationic meso-tetrakis methylpyridiniumyl (TMPyP) and their zinc complexes (ZnTPPS4 and ZnTMPyP) in the inactivation of Bovine herpesvirus type 1 (BoHV-1) was evaluated. At a non-cytotoxic concentration, all porphyrins showed significant antiviral activity after irradiation using a halogen lamp. The efficiency of the cationic porphyrins was higher than that of the anionic ones. Porphyrin complexation with zinc increases its lipophilicity and the number of absorbed photons, dramatically reducing the time for complete virus inactivation. The high superposition of the compound optical absorption and light source emission spectra played a key role in the virus inactivation efficiency. The results demonstrated the high effectivity of the photodynamic inactivation of BoHV-1. This method can be used as an auxiliary in the treatment of disorders attributed to BoHV-1 infection, and the porphyrins are promising photosensitizers for this application.


Asunto(s)
Herpesvirus Bovino 1/efectos de los fármacos , Herpesvirus Bovino 1/efectos de la radiación , Fotoquimioterapia , Porfirinas/farmacología , Animales , Contención de Riesgos Biológicos , Perros , Células de Riñón Canino Madin Darby , Porfirinas/administración & dosificación , Especies Reactivas de Oxígeno
5.
Nanoscale Res Lett ; 13(1): 40, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29404784

RESUMEN

Interaction between porphyrins and quantum dots (QD) via energy and/or charge transfer is usually accompanied by reduction of the QD luminescence intensity and lifetime. However, for CdSe/ZnS-Cys QD water solutions, kept at 276 K during 3 months (aged QD), the significant increase in the luminescence intensity at the addition of meso-tetrakis (p-sulfonato-phenyl) porphyrin (TPPS4) has been observed in this study. Aggregation of QD during the storage provokes reduction in the quantum yield and lifetime of their luminescence. Using steady-state and time-resolved fluorescence techniques, we demonstrated that TPPS4 stimulated disaggregation of aged CdSe/ZnS-Cys QD in aqueous solutions, increasing the quantum yield of their luminescence, which finally reached that of the fresh-prepared QD. Disaggregation takes place due to increase in electrostatic repulsion between QD at their binding with negatively charged porphyrin molecules. Binding of just four porphyrin molecules per single QD was sufficient for total QD disaggregation. The analysis of QD luminescence decay curves demonstrated that disaggregation stronger affected the luminescence related with the electron-hole annihilation in the QD shell. The obtained results demonstrate the way to repair aged QD by adding of some molecules or ions to the solutions, stimulating QD disaggregation and restoring their luminescence characteristics, which could be important for QD biomedical applications, such as bioimaging and fluorescence diagnostics. On the other hand, the disaggregation is important for QD applications in biology and medicine since it reduces the size of the particles facilitating their internalization into living cells across the cell membrane.

6.
Biochim Biophys Acta Gen Subj ; 1861(4): 900-909, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28130157

RESUMEN

BACKGROUND: The study of acridine orange (AO) spectral characteristics and the quenching of its singlet and triplet excited states by TEMPO radical at its binding to DNA in the function of the DNA concentration and in the absence and presence of NaCl is reported. METHODS: The study was performed using steady-state and time resolved optical absorption and florescence, fluorescence correlation spectroscopy and resonant light scattering techniques. RESULTS: The presence of different species in equilibrium: AO monomers and aggregates bound to DNA, has been demonstrated, their relative content depending on the DNA and the AO concentrations. At high DNA concentration the AO monomers are protected against the contact with other molecules, thus reducing the AO excited state quenching. The addition of NaCl reduces the AO binding constant to DNA, thus reducing the AO and DNA aggregation. CONCLUSIONS: The interaction of AO with DNA is a complex process, including aggregation and disaggregation of both components. This modifies the AO excited state characteristics and AO accessibility to other molecules. The salt reduces the DNA effects on the AO excited state characteristics thus attenuating its effects on the AO efficacy in applications. GENERAL SIGNIFICANCE: This study demonstrates that the interaction of photosensitizers with DNA, depending on their relative concentrations, can both decrease and increase the photosensitizer efficacy in applications. The salt is able to attenuate these effects.


Asunto(s)
Naranja de Acridina/química , ADN/química , Concentración Osmolar , Cloruro de Sodio/química , Espectrometría de Fluorescencia/métodos
7.
Photochem Photobiol ; 88(4): 992-1000, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22332981

RESUMEN

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis. Currently, the treatment approach involves the use of antifungal drugs and requires years of medical therapy, which can induce nephrotoxicity and lead to resistance in yeast strains. Photodynamic inactivation (PDI) is a new therapy capable of killing microorganisms via the combination of a nontoxic dye with visible light to generate toxic reactive oxygen species (ROS). We investigated the phototoxic effect of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP), a cationic porphyrin, on the survival of P. brasiliensis following exposure to light. Phototoxicity was found to depend on both the fluence and concentration of the photosensitizer (PS). Although the biological effects of PDI are known, the molecular mechanisms underlying the resultant damage to cells are poorly defined. Therefore, we evaluated the molecular response to PDI-induced oxidative stress by gene transcription analysis. We selected genes associated with the high-osmolarity glycerol (HOG)-mitogen-activated protein kinase (MAPK) pathway and antioxidant enzymes. The genes analyzed were all overexpressed after PDI treatment, suggesting that the oxidative stress generated in our experimental conditions induces antioxidant activity. In addition to PDI-induced gene expression, there was high cell mortality, suggesting that the antioxidant response was not sufficient to avoid fungal mortality.


Asunto(s)
Paracoccidioides/efectos de los fármacos , Paracoccidioides/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica , Luz , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Paracoccidioides/metabolismo , Fármacos Fotosensibilizantes/química , Porfirinas/química , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética
8.
Opt Express ; 19(11): 10813-23, 2011 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-21643338

RESUMEN

We report on a method to study the dynamics of triplet formation based on the fluorescence signal produced by a pulse train. Basically, the pulse train acts as sequential pump-probe pulses that precisely map the excited-state dynamics in the long time scale. This allows characterizing those processes that affect the population evolution of the first excited singlet state, whose decay gives rise to the fluorescence. The technique was proven to be valuable to measure parameters of triplet formation in organic molecules. Additionally, this single beam technique has the advantages of simplicity, low noise and background-free signal detection.


Asunto(s)
Rayos Láser , Óptica y Fotónica , Porfirinas/química , Algoritmos , Simulación por Computador , Diseño de Equipo , Fluorescencia , Concentración de Iones de Hidrógeno , Cinética , Distribución Normal , Oscilometría/métodos , Rodaminas/química , Espectrofotometría/métodos , Factores de Tiempo
9.
Artículo en Inglés | MEDLINE | ID: mdl-15955725

RESUMEN

The dynamics of aggregation of meso-tetrakis (p-sulfonatofenyl) porphyrin (TPPS4) in function of its concentration, pH and ionic strength was studied by optical absorption, fluorescence and resonance light scattering (RLS) techniques. In the region of pH, where TPPS4 exists in biprotonated form, the addition of NaCl induces the TPPS4 aggregation due to the formation of the "cloud" of counter ions around the TPPS4 molecule thus reducing electrostatic repulsion between the porphyrin molecules. The formation of this "cloud" shifts the pKa value to acid region (from 5.0 in the absence of salt to 4.5 at [NaCl] = 0.4 M), reduces the TPPS4 absorption in all spectral range and quantum yield and lifetime of fluorescence (from 0.27 to 0.17 and from 4.00+/-0.04 to 3.00+/-0.03 ns in the absence of salt and in the presence of NaCl, respectively). The aggregation process involves two successive stages: initially H aggregates are formed, which in time are transformed in J ones. The existence of these two stages was confirmed by the fluorescence and RLS data. The kinetics of the formation of J aggregates is characterized by the induction time t1 and the average growth time t2, which depend on both TPPS4 and salt concentrations. The induction period t1 appears as a result of initial formation of H aggregates and their successive transformation in J ones. At very high TPPS4 concentrations, the J aggregates are united in more complex structures such as hollow cylinders or helixes.


Asunto(s)
Porfirinas/química , Concentración de Iones de Hidrógeno , Dispersión de Radiación , Cloruro de Sodio , Soluciones/química , Espectrometría de Fluorescencia , Agua/química
10.
J Photochem Photobiol B ; 75(1-2): 27-32, 2004 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-15246347

RESUMEN

The cytotoxicity of two nitroheterocyclic compounds (NHCD), Nitracrine, 1-nitro-9(3-3-dimethylaminopropylamino) acridine and Quinifuryl, 2-(5'-nitro-2'-furanyl) ethenyl-4-[N-[4-(N,N-diethylamino)-1'-methylbutyl] carbamoyl] quinoline, towards two lines of leukaemic cells and a line of non-transformed cells, was measured in comparison, on the dark and under illumination with visible light (350-450 nm). Both drugs showed highly elevated cytotoxicity when illuminated with LC(50) values 7-35 times lower after 1 h illumination compared to 1 h incubation of cells incubation with drug on the dark. Cytotoxicity of Nitracrine toward all cell lines studied exceeded that of Quinifuryl, both on the dark and under illumination, so that approximately 10 times lower concentration of former drug was needed to reach the same toxicity as the latter. General toxic effect was calculated as a direct cell kill and a cell proliferation arrest. The effect >80% for both drugs was achieved after 1 h cell illumination with as low drug concentrations as 0.2 microM for Quinifuryl and 0.02 microM for Nitracrine.


Asunto(s)
Antineoplásicos/farmacología , Luz , Nitracrina/farmacología , Quinolinas/farmacología , Animales , Antineoplásicos/toxicidad , Supervivencia Celular/efectos de los fármacos , Oscuridad , Evaluación Preclínica de Medicamentos , Humanos , Células K562 , Leucemia P388 , Ratones , Células 3T3 NIH , Nitracrina/toxicidad , Quinolinas/toxicidad
11.
Biochim Biophys Acta ; 1621(2): 183-91, 2003 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-12726994

RESUMEN

Spectroscopic characteristics of a cyanine dye with two chromophores (biscyanine dye, BCD) in aqueous solutions and effects of NaCl and DNA upon these characteristics have been studied by optical absorption, circular dichroism (CD) and fluorescence spectroscopies. In homogeneous solutions, BCD is characterized by intense optical absorption (epsilon =1.33 x 10(5) M(-1) x cm(-1)) and weak fluorescence (phi(fl)=0.018) in the wavelength region greater than 600 nm. The dye forms H-aggregates at low concentrations (10(-6) M). NaCl stimulates the formation of both H- and J-aggregates of the dye at much lower dye concentrations, while DNA in low concentrations (<10(-6) M) stimulated the formation of just J-aggregates on the surface of the DNA molecule. Higher DNA concentrations induce the dye to disaggregate, and there exists an equilibrium between three dye forms: free monomers, J-aggregates and bound monomers, the maximum content of J-aggregates was observed at [DNA]/[BCD]=0.6+/-0.2 and total disaggregation at [DNA]/[BCD]=190+/-20. J-aggregates are characterized by phi(fl)=0.05 and bound monomers by phi(fl)=0.44. In the presence of NaCl, total disaggregation was observed at [DNA]/[BCD]=570+/-10 due to competition between Na(+) and the dye molecules for DNA electronegative binding sites.


Asunto(s)
Carbocianinas/química , Compuestos Cromogénicos/química , ADN/química , Dicroismo Circular , Concentración Osmolar , Fotoquimioterapia , Cloruro de Sodio/farmacología , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA