Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 696181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211452

RESUMEN

In recent years, synthetic riboswitches have become increasingly important to construct genetic circuits in all three domains of life. In bacteria, synthetic translational riboswitches are often employed that modulate gene expression by masking the Shine-Dalgarno (SD) sequence in the absence or presence of a cognate ligand. For (halo-)archaeal translation, a SD sequence is not strictly required. The application of synthetic riboswitches in haloarchaea is therefore limited so far, also because of the molar intracellular salt concentrations found in these microbes. In this study, we applied synthetic theophylline-dependent translational riboswitches in the archaeon Haloferax volcanii. The riboswitch variants A through E and E∗ were chosen since they not only mask the SD sequence but also the AUG start codon by forming a secondary structure in the absence of the ligand theophylline. Upon addition of the ligand, the ribosomal binding site and start codon become accessible for translation initiation. Riboswitch E mediated a dose-dependent, up to threefold activation of the bgaH reporter gene expression. Raising the salt concentration of the culture media from 3 to 4 M NaCl resulted in a 12-fold increase in the switching capacity of riboswitch E, and switching activity increased up to 26-fold when the cultivating temperature was reduced from 45 to 30°C. To construct a genetic circuit, riboswitch E was applied to regulate the synthesis of the transcriptional activator GvpE allowing a dose-dependent activation of the mgfp6 reporter gene under P pA promoter control.

2.
Front Microbiol ; 10: 1200, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191505

RESUMEN

The study of promoter activities in haloarchaea is carried out exclusively using enzymes as reporters. An alternative reporter is the gene encoding the Green Fluorescent Protein (GFP), a simple and fast tool for investigating promoter strengths. However, the GFP variant smRS-GFP, used to analyze protein stabilities in haloarchaea, is not suitable to quantify weak promoter activities, since the fluorescence signal is too low. We enhanced the fluorescence of smRS-GFP 3.3-fold by introducing ten amino acid substitutions, resulting in mGFP6. Using mGFP6 as reporter, we studied six haloarchaeal promoters exhibiting different promoter strengths. The strongest activity was observed with the housekeeping promoters Pfdx of the ferredoxin gene and P2 of the ribosomal 16S rRNA gene. Much lower activities were determined for the promoters of the p-vac region driving the expression of gas vesicle protein (gvp) genes in Halobacterium salinarum PHH1. The basal promoter strength dropped in the order PpA , PpO > PpF , PpD . All promoters showed a growth-dependent activity pattern. The GvpE-induced activities of PpA and PpD were high, but lower compared to the Pfdx or P2 promoter activities. The mGFP6 reporter was also used to investigate the regulatory effects of 5'-untranslated regions (5'-UTRs) of three different gvp mRNAs. A deletion of the 5'-UTR always resulted in an increased expression, implying a negative effect of the 5'-UTRs on translation. Our experiments confirmed mGFP6 as simple, fast and sensitive reporter to study gene expression in haloarchaea.

3.
Front Microbiol ; 9: 1897, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174663

RESUMEN

Several extremely halophilic archaea produce proteinaceous gas vesicles consisting of a gas-permeable protein wall constituted mainly by the gas vesicle proteins GvpA and GvpC. Eight additional accessory Gvp are involved in gas vesicle formation and might assist the assembly of this structure. Investigating interactions of halophilic proteins in vivo requires a method functioning at 2.5-5 M salt, and the split-GFP method was tested for this application. The two fragments NGFP and CGFP do not assemble a fluorescent GFP protein when produced in trans, but they assemble a fluorescent GFP when fused to interacting proteins. To adapt the method to high salt, we used the genes encoding two fragments of the salt-stable mGFP2 to construct four vector plasmids that allow an N- or C-terminal fusion to the two proteins of interest. To avoid a hindrance in the assembly of mGFP2, the fusion included a linker of 15 or 19 amino acids. The small gas vesicle accessory protein GvpM and its interaction partners GvpH, GvpJ, and GvpL were investigated by split-GFP. Eight different combinations were studied in each case, and fluorescent transformants indicative of an interaction were observed. We also determined that GvpF interacts with GvpM and uncovered the location of the interaction site of each of these proteins in GvpM. GvpL mainly interacted with the N-terminal 25-amino acid fragment of GvpM, whereas the other three proteins bound predominately to the C-terminal portion. Overall, the split-GFP method is suitable to investigate the interaction of two proteins in haloarchaeal cells. In future experiments, we will study the interactions of the remaining Gvps and determine whether some or all of these accessory Gvp proteins form (a) protein complex(es) during early stages of the assembly of the gas vesicle wall.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...