Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Med Chem ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728572

RESUMEN

Human interleukin-1ß (IL-1ß) is a pro-inflammatory cytokine that plays a critical role in the regulation of the immune response and the development of various inflammatory diseases. In this publication, we disclose our efforts toward the discovery of IL-1ß binders that interfere with IL-1ß signaling. To this end, several technologies were used in parallel, including fragment-based screening (FBS), DNA-encoded library (DEL) technology, peptide discovery platform (PDP), and virtual screening. The utilization of distinct technologies resulted in the identification of new chemical entities exploiting three different sites on IL-1ß, all of them also inhibiting the interaction with the IL-1R1 receptor. Moreover, we identified lysine 103 of IL-1ß as a target residue suitable for the development of covalent, low-molecular-weight IL-1ß antagonists.

2.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199570

RESUMEN

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Asunto(s)
Inflamasomas , Leucocitos Mononucleares , Animales , Humanos , Ratones , Línea Celular , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transporte de Proteínas/fisiología
3.
Front Immunol ; 14: 1281607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022631

RESUMEN

NLRP3 is a prototypical sensor protein connecting cellular stress to pro-inflammatory signaling. A complex array of regulatory steps is required to switch NLRP3 from an inactive state into a primed entity that is poised to assemble an inflammasome. Accumulating evidence suggests that post-translational mechanisms are critical. In particular, phosphorylation/dephosphorylation and ubiquitylation/deubiquitylation reactions have been reported to regulate NLRP3. Taken individually, several post-translational modifications appear to be essential. However, it remains difficult to understand how they may be coordinated, whether there is a unique sequence of regulatory steps accounting for the functional maturation of NLRP3, or whether the sequence is subject to variations depending on cell type, the stimulus, and other parameters such as the cellular context. This review will focus on the regulation of the NLRP3 inflammasome by phosphorylation and dephosphorylation, and on kinases and phosphatases that have been reported to modulate NLRP3 activity. The aim is to try to integrate the current understanding and highlight potential gaps for further studies.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo
4.
Nat Commun ; 14(1): 5497, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679328

RESUMEN

Human interleukin-1ß (hIL-1ß) is a pro-inflammatory cytokine involved in many diseases. While hIL-1ß directed antibodies have shown clinical benefit, an orally available low-molecular weight antagonist is still elusive, limiting the applications of hIL-1ß-directed therapies. Here we describe the discovery of a low-molecular weight hIL-1ß antagonist that blocks the interaction with the IL-1R1 receptor. Starting from a low affinity fragment-based screening hit 1, structure-based optimization resulted in a compound (S)-2 that binds and antagonizes hIL-1ß with single-digit micromolar activity in biophysical, biochemical, and cellular assays. X-ray analysis reveals an allosteric mode of action that involves a hitherto unknown binding site in hIL-1ß encompassing two loops involved in hIL-1R1/hIL-1ß interactions. We show that residues of this binding site are part of a conformationally excited state of the mature cytokine. The compound antagonizes hIL-1ß function in cells, including primary human fibroblasts, demonstrating the relevance of this discovery for future development of hIL-1ß directed therapeutics.


Asunto(s)
Citocinas , Delgadez , Humanos , Interleucina-1beta , Peso Molecular , Sitios de Unión , Biofisica
5.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645730

RESUMEN

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. It was shown that in immortalized bone marrow derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocytes cell lines expressing a synthetic protein blocking HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context dependent.

6.
J Neuroinflammation ; 20(1): 194, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633912

RESUMEN

BACKGROUND: Bruton's tyrosine kinase (BTK) is a key signaling node in B cell receptor (BCR) and Fc receptor (FcR) signaling. BTK inhibitors (BTKi) are an emerging oral treatment option for patients suffering from multiple sclerosis (MS). Remibrutinib (LOU064) is a potent, highly selective covalent BTKi with a promising preclinical and clinical profile for MS and other autoimmune or autoallergic indications. METHODS: The efficacy and mechanism of action of remibrutinib was assessed in two different experimental autoimmune encephalomyelitis (EAE) mouse models for MS. The impact of remibrutinib on B cell-driven EAE pathology was determined after immunization with human myelin oligodendrocyte glycoprotein (HuMOG). The efficacy on myeloid cell and microglia driven neuroinflammation was determined in the RatMOG EAE. In addition, we assessed the relationship of efficacy to BTK occupancy in tissue, ex vivo T cell response, as well as single cell RNA-sequencing (scRNA-seq) in brain and spinal cord tissue. RESULTS: Remibrutinib inhibited B cell-dependent HuMOG EAE in dose-dependent manner and strongly reduced neurological symptoms. At the efficacious oral dose of 30 mg/kg, remibrutinib showed strong BTK occupancy in the peripheral immune organs and in the brain of EAE mice. Ex vivo MOG-specific T cell recall response was reduced, but not polyclonal T cell response, indicating absence of non-specific T cell inhibition. Remibrutinib also inhibited RatMOG EAE, suggesting that myeloid cell and microglia inhibition contribute to its efficacy in EAE. Remibrutinib did not reduce B cells, total Ig levels nor MOG-specific antibody response. In brain and spinal cord tissue a clear anti-inflammatory effect in microglia was detected by scRNA-seq. Finally, remibrutinib showed potent inhibition of in vitro immune complex-driven inflammatory response in human microglia. CONCLUSION: Remibrutinib inhibited EAE models by a two-pronged mechanism based on inhibition of pathogenic B cell autoreactivity, as well as direct anti-inflammatory effects in microglia. Remibrutinib showed efficacy in both models in absence of direct B cell depletion, broad T cell inhibition or reduction of total Ig levels. These findings support the view that remibrutinib may represent a novel treatment option for patients with MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Animales , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Células Mieloides , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Agammaglobulinemia Tirosina Quinasa , Complejo Antígeno-Anticuerpo , Antiinflamatorios
7.
Comput Struct Biotechnol J ; 20: 4717-4732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147669

RESUMEN

We developed a bioinformatics-led substrate discovery workflow to expand the known substrate repertoire of MALT1. Our approach, termed GO-2-Substrates, integrates protein function information, including GO terms from known substrates, with protein sequences to rank substrate candidates by similarity. We applied GO-2-Substrates to MALT1, a paracaspase and master regulator of NF-κB signalling in adaptive immune responses. With only 12 known substrates, the evolutionarily conserved paracaspase functions and phenotypes of Malt1 -/- mice strongly implicate the existence of undiscovered substrates. We tested the ranked predictions from GO-2-Substrates of new MALT1 human substrates by co-expression of candidates transfected with the oncogenic constitutively active cIAP2-MALT1 fusion protein or CARD11/BCL10/MALT1 active signalosome. We identified seven new MALT1 substrates by the co-transfection screen: TANK, TAB3, CASP10, ZC3H12D, ZC3H12B, CILK1 and ILDR2. Using catalytically inactive cIAP2-MALT1 (Cys464Ala), a MALT1 inhibitor, MLT-748, and noncleavable P1-Arg to Ala mutant versions of each substrate in dual transfections, we validated the seven new substrates in vitro. We confirmed the cleavage of endogenous TANK and the RNase ZC3H12D in B cells by Western blotting and mining TAILS N-terminomics datasets, where we also uncovered evidence for these and 12 other candidate substrates by endogenous MALT1. Thus, protein function information improves substrate predictions. The new substrates and other high-ranked MALT1 candidate substrates should open new biological frontiers for further validation and exploration of the function of MALT1 within and beyond NF-κB regulation.

8.
Mol Cancer Res ; 20(3): 373-386, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753803

RESUMEN

MALT1 is the effector protein of the CARMA/Bcl10/MALT1 (CBM) signalosome, a multiprotein complex that drives pro-inflammatory signaling pathways downstream of a diverse set of receptors. Although CBM activity is best known for its role in immune cells, emerging evidence suggests that it plays a key role in the pathogenesis of solid tumors, where it can be activated by selected G protein-coupled receptors (GPCR). Here, we demonstrated that overexpression of GPCRs implicated in breast cancer pathogenesis, specifically the receptors for Angiotensin II and thrombin (AT1R and PAR1), drove a strong epithelial-to-mesenchymal transition (EMT) program in breast cancer cells that is characteristic of claudin-low, triple-negative breast cancer (TNBC). In concert, MALT1 was activated in these cells and contributed to the dramatic EMT phenotypic changes through regulation of master EMT transcription factors including Snail and ZEB1. Importantly, blocking MALT1 signaling, through either siRNA-mediated depletion of MALT1 protein or pharmacologic inhibition of its activity, was effective at partially reversing the molecular and phenotypic indicators of EMT. Treatment of mice with mepazine, a pharmacologic MALT1 inhibitor, reduced growth of PAR1+, MDA-MB-231 xenografts and had an even more dramatic effect in reducing the burden of metastatic disease. These findings highlight MALT1 as an attractive therapeutic target for claudin-low TNBCs harboring overexpression of one or more selected GPCRs. IMPLICATIONS: This study nominates a GPCR/MALT1 signaling axis as a pathway that can be pharmaceutically targeted to abrogate EMT and metastatic progression in TNBC, an aggressive form of breast cancer that currently lacks targeted therapies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Movimiento Celular , Claudinas/farmacología , Claudinas/uso terapéutico , Transición Epitelial-Mesenquimal , Humanos , Ratones , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Receptor PAR-1/uso terapéutico , Neoplasias de la Mama Triple Negativas/metabolismo
9.
PLoS One ; 16(11): e0248668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34767572

RESUMEN

BACKGROUND: The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. METHODS: To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. RESULTS: PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1ß production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. CONCLUSION: Although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Quinasa C/metabolismo , Biomarcadores/metabolismo , Caspasa 1/metabolismo , Línea Celular Tumoral , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Fosforilación , Pirina/metabolismo , Células U937
10.
Oncogenesis ; 10(4): 32, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824280

RESUMEN

CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.

11.
Biochem Biophys Res Commun ; 545: 177-182, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33561652

RESUMEN

The NLRP3 inflammasome is a critical component of the innate immune response to sterile inflammation. Its regulation involves a priming step, required for up-regulation of inflammasome protagonists and an activation step leading to NLRP3 inflammasome complex assembly, which triggers caspase-1 activity. The IκKß kinase regulates canonical NF-κB, a key pathway involved in transcriptional priming. We found that IκKß also regulates the activation and function of the NLRP3 inflammasome beyond the priming step. Two unrelated IκKß inhibitors, AFN700 and TPCA-1, when applied after priming, fully blocked IL-1ß secretion triggered by nigericin in THP-1 cells. Both inhibitors prevented neither inflammasome assembly, as monitored by measuring the formation of ASC specks, nor the generation of caspase-1 p20, a hallmark of caspase-1 activity, but they impaired the initial cleavage and activation of procaspase-1. These data thus indicate that IκKß activity is required for efficient activation of NLRP3, suggesting that IκKß may fulfill a dual role in coupling priming and activation of the NLRP3 inflammasome.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Amidas/farmacología , Caspasa 1/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Interleucina-1beta/biosíntesis , FN-kappa B/metabolismo , Nigericina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Células THP-1 , Tiofenos/farmacología
12.
J Med Chem ; 63(23): 14576-14593, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33252239

RESUMEN

MALT1 plays a central role in immune cell activation by transducing NF-κB signaling, and its proteolytic activity represents a key node for therapeutic intervention. Two cycles of scaffold morphing of a high-throughput biochemical screening hit resulted in the discovery of MLT-231, which enabled the successful pharmacological validation of MALT1 allosteric inhibition in preclinical models of humoral immune responses and B-cell lymphomas. Herein, we report the structural activity relationships (SARs) and analysis of the physicochemical properties of a pyrazolopyrimidine-derived compound series. In human T-cells and B-cell lymphoma lines, MLT-231 potently and selectively inhibits the proteolytic activity of MALT1 in NF-κB-dependent assays. Both in vitro and in vivo profiling of MLT-231 support further optimization of this in vivo tool compound toward preclinical characterization.


Asunto(s)
Inhibidores de Caspasas/uso terapéutico , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Urea/análogos & derivados , Urea/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Caspasas/síntesis química , Inhibidores de Caspasas/farmacología , Descubrimiento de Drogas , Femenino , Humanos , Inmunidad Humoral/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/síntesis química , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas Sprague-Dawley , Relación Estructura-Actividad , Linfocitos T/efectos de los fármacos , Urea/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Med Chem ; 63(23): 14594-14608, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33216547

RESUMEN

The paracaspase MALT1 has gained increasing interest as a target for the treatment of subsets of lymphomas as well as autoimmune diseases, and there is a need for suitable compounds to explore the therapeutic potential of this target. Here, we report the optimization of the in vivo potency of pyrazolopyrimidines, a class of highly selective allosteric MALT1 inhibitors. High doses of the initial lead compound led to tumor stasis in an activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) xenograft model, but this compound suffered from a short in vivo half-life and suboptimal potency in whole blood. Guided by metabolism studies, we identified compounds with reduced metabolic clearance and increased in vivo half-life. In the second optimization step, masking one of the hydrogen-bond donors of the central urea moiety through an intramolecular interaction led to improved potency in whole blood. This was associated with improved in vivo potency in a mechanistic model of B cell activation. The optimized compound led to tumor regression in a CARD11 mutant ABC-DLBCL lymphoma xenograft model.


Asunto(s)
Sangre/metabolismo , Inhibidores de Caspasas/uso terapéutico , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Urea/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Inhibidores de Caspasas/síntesis química , Inhibidores de Caspasas/metabolismo , Inhibidores de Caspasas/farmacocinética , Línea Celular Tumoral , Femenino , Semivida , Humanos , Ratones Endogámicos BALB C , Ratones SCID , Microsomas Hepáticos/metabolismo , Neoplasias/tratamiento farmacológico , Pirazoles/síntesis química , Pirazoles/metabolismo , Pirazoles/farmacocinética , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratas Sprague-Dawley , Ovinos , Urea/síntesis química , Urea/metabolismo , Urea/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Front Immunol ; 11: 745, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425939

RESUMEN

Genetic disruption or short-term pharmacological inhibition of MALT1 protease is effective in several preclinical models of autoimmunity and B cell malignancies. Despite these protective effects, the severe reduction in regulatory T cells (Tregs) and the associated IPEX-like pathology occurring upon congenital disruption of the MALT1 protease in mice has raised concerns about the long-term safety of MALT1 inhibition. Here we describe the results of a series of toxicology studies in rat and dog species using MLT-943, a novel potent and selective MALT1 protease inhibitor. While MLT-943 effectively prevented T cell-dependent B cell immune responses and reduced joint inflammation in the collagen-induced arthritis rat pharmacology model, in both preclinical species, pharmacological inhibition of MALT1 was associated with a rapid and dose-dependent reduction in Tregs and resulted in the progressive appearance of immune abnormalities and clinical signs of an IPEX-like pathology. At the 13-week time point, rats displayed severe intestinal inflammation associated with mast cell activation, high serum IgE levels, systemic T cell activation and mononuclear cell infiltration in multiple tissues. Importantly, using thymectomized rats we demonstrated that MALT1 protease inhibition affects peripheral Treg frequency independently of effects on thymic Treg output and development. Our data confirm the therapeutic potential of MALT1 protease inhibitors but highlight the safety risks and challenges to consider before potential application of such inhibitors into the clinic.


Asunto(s)
Diabetes Mellitus Tipo 1/congénito , Diarrea/etiología , Enfermedades Genéticas Ligadas al Cromosoma X/etiología , Enfermedades del Sistema Inmune/congénito , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Linfocitos T Reguladores/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 1/etiología , Perros , Femenino , Humanos , Enfermedades del Sistema Inmune/etiología , Inflamación/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Endogámicas Lew , Ratas Wistar , Linfocitos T Reguladores/inmunología
15.
Mol Cell ; 77(5): 927-929, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142688
16.
Arthritis Rheumatol ; 72(6): 919-930, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31943941

RESUMEN

OBJECTIVE: Fcγ receptors (FcγR) play important roles in both protective and pathogenic immune responses. The assembly of the CBM signalosome encompassing caspase recruitment domain-containing protein 9, B cell CLL/lymphoma 10, and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT-1) is required for optimal FcγR-induced canonical NF-κB activation and proinflammatory cytokine release. This study was undertaken to clarify the relevance of MALT-1 protease activity in FcγR-driven events and evaluate the therapeutic potential of selective MALT-1 protease inhibitors in FcγR-mediated diseases. METHODS: Using genetic and pharmacologic disruption of MALT-1 scaffolding and enzymatic activity, we assessed the relevance of MALT-1 function in murine and human primary myeloid cells upon stimulation with immune complexes (ICs) and in murine models of autoantibody-driven arthritis and immune thrombocytopenic purpura (ITP). RESULTS: MALT-1 protease function is essential for optimal FcγR-induced production of proinflammatory cytokines by various murine and human myeloid cells stimulated with ICs. In contrast, MALT-1 protease inhibition did not affect the Syk-dependent, FcγR-mediated production of reactive oxygen species or leukotriene B4 . Notably, pharmacologic MALT-1 protease inhibition in vivo reduced joint inflammation in the murine K/BxN serum-induced arthritis model (mean area under the curve for paw swelling of 45.42% versus 100% in control mice; P = 0.0007) but did not affect platelet depletion in a passive model of ITP. CONCLUSION: Our findings indicate a specific contribution of MALT-1 protease activity to FcγR-mediated events and suggest that MALT-1 protease inhibitors have therapeutic potential in a subset of FcγR-driven inflammatory disorders.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/inmunología , Receptores de IgG/inmunología , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Plaquetas/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones , Células Mieloides/metabolismo
17.
J Immunol ; 203(11): 2791-2806, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31659015

RESUMEN

The paracaspase Malt1 is a key regulator of canonical NF-κB activation downstream of multiple receptors in both immune and nonimmune cells. Genetic disruption of Malt1 protease function in mice and MALT1 mutations in humans results in reduced regulatory T cells and a progressive multiorgan inflammatory pathology. In this study, we evaluated the altered immune homeostasis and autoimmune disease in Malt1 protease-deficient (Malt1PD) mice and the Ags driving disease manifestations. Our data indicate that B cell activation and IgG1/IgE production is triggered by microbial and dietary Ags preferentially in lymphoid organs draining mucosal barriers, likely as a result of dysregulated mucosal immune homeostasis. Conversely, the disease was driven by a polyclonal T cell population directed against self-antigens. Characterization of the Malt1PD T cell compartment revealed expansion of T effector memory cells and concomitant loss of a CD4+ T cell population that phenotypically resembles anergic T cells. Therefore, we propose that the compromised regulatory T cell compartment in Malt1PD animals prevents the efficient maintenance of anergy and supports the progressive expansion of pathogenic, IFN-γ-producing T cells. Overall, our data revealed a crucial role of the Malt1 protease for the maintenance of intestinal and systemic immune homeostasis, which might provide insights into the mechanisms underlying IPEX-related diseases associated with mutations in MALT1.


Asunto(s)
Autoinmunidad/inmunología , Homeostasis/inmunología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/deficiencia , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética
19.
Nat Chem Biol ; 15(3): 304-313, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692685

RESUMEN

MALT1 paracaspase is central for lymphocyte antigen-dependent responses including NF-κB activation. We discovered nanomolar, selective allosteric inhibitors of MALT1 that bind by displacing the side chain of Trp580, locking the protease in an inactive conformation. Interestingly, we had previously identified a patient homozygous for a MALT1 Trp580-to-serine mutation who suffered from combined immunodeficiency. We show that the loss of tryptophan weakened interactions between the paracaspase and C-terminal immunoglobulin MALT1 domains resulting in protein instability, reduced protein levels and functions. Upon binding of allosteric inhibitors of increasing potency, we found proportionate increased stabilization of MALT1-W580S to reach that of wild-type MALT1. With restored levels of stable MALT1 protein, the most potent of the allosteric inhibitors rescued NF-κB and JNK signaling in patient lymphocytes. Following compound washout, MALT1 substrate cleavage was partly recovered. Thus, a molecular corrector rescues an enzyme deficiency by substituting for the mutated residue, inspiring new potential precision therapies to increase mutant enzyme activity in other deficiencies.


Asunto(s)
Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Regulación de la Expresión Génica , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/terapia , Linfocitos/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/ultraestructura , FN-kappa B/metabolismo , Proteínas de Neoplasias , Transducción de Señal
20.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663686

RESUMEN

Besides its function in lymphoid cells, which has been addressed by numerous studies, the paracaspase MALT1 also plays an important role in innate cells downstream of pattern recognition receptors. Best studied are the Dectin-1 and Dectin-2 members of the C-type lectin-like receptor family that induce a SYK- and CARD9-dependent signaling cascade leading to NF-κB activation, in a MALT1-dependent manner. By contrast, Toll-like receptors (TLR), such as TLR-4, propagate NF-κB activation but signal via an MYD88/IRAK-dependent cascade. Nonetheless, whether MALT1 might contribute to TLR-4 signaling has remained unclear. Recent evidence with MLT-827, a potent and selective inhibitor of MALT1 paracaspase activity, indicates that TNF- production downstream of TLR-4 in human myeloid cells is independent of MALT1, as opposed to TNF- production downstream of Dectin-1, which is MALT1 dependent. Here, we addressed the selective involvement of MALT1 in pattern recognition sensing further, using a variety of human and mouse cellular preparations, and stimulation of Dectin-1, MINCLE or TLR-4 pathways. We also provided additional insights by exploring cytokines beyond TNF-, and by comparing MLT-827 to a SYK inhibitor (Cpd11) and to an IKK inhibitor (AFN700). Collectively, the data provided further evidence for the MALT1-dependency of C-type lectin-like receptor -signaling by contrast to TLR-signaling.


Asunto(s)
Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Animales , Humanos , Ratones , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...