Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Vis Exp ; (196)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37335124

RESUMEN

Skeletal muscle is the largest tissue of the body and performs multiple functions, from locomotion to body temperature control. Its functionality and recovery from injuries depend on a multitude of cell types and on molecular signals between the core muscle cells (myofibers, muscle stem cells) and their niche. Most experimental settings do not preserve this complex physiological microenvironment, and neither do they allow the ex vivo study of muscle stem cells in quiescence, a cell state that is crucial for them. Here, a protocol is outlined for the ex vivo culture of muscle stem cells with cellular components of their niche. Through the mechanical and enzymatic breakdown of muscles, a mixture of cell types is obtained, which is put in 2D culture. Immunostaining shows that within 1 week, multiple niche cells are present in culture alongside myofibers and, importantly, Pax7-positive cells that display the characteristics of quiescent muscle stem cells. These unique properties make this protocol a powerful tool for cell amplification and the generation of quiescent-like stem cells that can be used to address fundamental and translational questions.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Ratones , Animales , Diferenciación Celular , División Celular , Células Madre , Nicho de Células Madre/fisiología
3.
J Dev Biol ; 8(1)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053985

RESUMEN

The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.

4.
Elife ; 72018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30284969

RESUMEN

Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance between proliferation and growth arrest.


Asunto(s)
Células Madre Adultas/citología , Diferenciación Celular/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Desarrollo de Músculos/genética , Animales , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Mioblastos/citología , Mioblastos/metabolismo , Regeneración/genética , Células Satélite del Músculo Esquelético/citología
5.
Dev Biol ; 410(2): 213-222, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26687508

RESUMEN

Gata4 and Gata6 are closely related transcription factors that are essential for the development of a number of embryonic tissues. While they have nearly identical DNA-binding domains and similar patterns of expression, Gata4 and Gata6 null embryos have strikingly different embryonic lethal phenotypes. To determine whether the lack of redundancy is due to differences in protein function or Gata4 and Gata6 expression domains, we generated mice that contained the Gata6 cDNA in place of the Gata4 genomic locus. Gata4(Gata6/Gata6) embryos survived through embryonic day (E)12.5 and successfully underwent ventral folding morphogenesis, demonstrating that Gata6 is able to replace Gata4 function in extraembryonic tissues. Surprisingly, Gata6 is unable to replace Gata4 function in the septum transversum mesenchyme or the epicardium, leading to liver agenesis and lethal heart defects in Gata4(Gata6/Gata6) embryos. These studies suggest that Gata4 has evolved distinct functions in the development of these tissues that cannot be performed by Gata6, even when it is provided in the identical expression domain. Our work has important implications for the respective mechanisms of Gata function during development, as well as the functional evolution of these essential transcription factors.


Asunto(s)
Factor de Transcripción GATA4/fisiología , Corazón/embriología , Hígado/embriología , Animales , ADN Complementario/genética , Factor de Transcripción GATA4/genética , Células HEK293 , Humanos , Ratones
6.
J Clin Invest ; 122(10): 3516-28, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23006325

RESUMEN

Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis.


Asunto(s)
Factor de Transcripción GATA4/fisiología , Factor de Transcripción GATA6/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Organogénesis/genética , Páncreas/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Sitios de Unión , Carboxipeptidasas A/análisis , Diferenciación Celular , División Celular , Linaje de la Célula , Modelos Animales de Enfermedad , Endodermo/metabolismo , Células Epiteliales/patología , Factor de Transcripción GATA4/deficiencia , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/deficiencia , Factor de Transcripción GATA6/genética , Técnicas de Silenciamiento del Gen , Genotipo , Edad Gestacional , Hiperglucemia/congénito , Hiperglucemia/genética , Insulina/metabolismo , Secreción de Insulina , Ratones , Proteínas del Tejido Nervioso/análisis , Especificidad de Órganos , Páncreas/anomalías , Páncreas/patología , Transcripción Genética
7.
Dev Biol ; 359(2): 290-302, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21821017

RESUMEN

At the Drosophila melanogaster bithorax complex (BX-C) over 330kb of intergenic DNA is responsible for directing the transcription of just three homeotic (Hox) genes during embryonic development. A number of distinct enhancer cis-regulatory modules (CRMs) are responsible for controlling the specific expression patterns of the Hox genes in the BX-C. While it has proven possible to identify orthologs of known BX-C CRMs in different Drosophila species using overall sequence conservation, this approach has not proven sufficiently effective for identifying novel CRMs or defining the key functional sequences within enhancer CRMs. Here we demonstrate that the specific spatial clustering of transcription factor (TF) binding sites is important for BX-C enhancer activity. A bioinformatic search for combinations of putative TF binding sites in the BX-C suggests that simple clustering of binding sites is frequently not indicative of enhancer activity. However, through molecular dissection and evolutionary comparison across the Drosophila genus we discovered that specific TF binding site clustering patterns are an important feature of three known BX-C enhancers. Sub-regions of the defined IAB5 and IAB7b enhancers were both found to contain an evolutionarily conserved signature motif of clustered TF binding sites which is critical for the functional activity of the enhancers. Together, these results indicate that the spatial organization of specific activator and repressor binding sites within BX-C enhancers is of greater importance than overall sequence conservation and is indicative of enhancer functional activity.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Secuencia Conservada/genética , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Modelos Genéticos , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas Nucleares/genética , Motivos de Nucleótidos/genética , Unión Proteica , Especificidad de la Especie , Factores de Transcripción/genética , Transcripción Genética/genética
8.
Development ; 137(1): 5-13, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023155

RESUMEN

Cis-regulatory modules are non-protein-coding regions of DNA essential for the control of gene expression. One class of regulatory modules is embryonic enhancers, which drive gene expression during development as a result of transcription factor protein binding at the enhancer sequences. Recent comparative studies have begun to investigate the evolution of the sequence architecture within enhancers. These analyses are illuminating the way that developmental biologists think about enhancers by revealing their molecular mechanism of function.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA