Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35267683

RESUMEN

Fused deposition modeling (FDM), the most widely used additive manufacturing (AM) technology, is gaining considerable interest in the surgical sector for the production of single-use surgical devices that can be tailor-made according to specific requirements (e.g., type of patient surgery, specific shapes, etc.) due to its low cost, ease of access to materials (3D-printing filament), and the relatively low complexity. However, surgical 3D-printing parts should resist sterilization treatments without losing structural, mechanical, and dimensional accuracy. Thus, in this work, 3D-filaments based on poly(lactic acid) (PLA), poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG), and a modified PETG material (CPE) were used to produce 3D-printed parts and further subjected to moist heat (MH) and dry heat (DH) sterilization processes as affordable and widely used sterilization processes in the medical field. The effect of MH and DH was evaluated by performing a complete mechanical, structural, thermal, and morphological characterization before and after both treatments. In general, the moist heat treatment produced a higher degradation of the polymeric matrix of PETG and CPE due to hydrolytic and thermal degradation, particularly affecting the tensile test and flexural properties. For instance, the linear coefficient of thermal expansion (LCTE) before glass transition temperature (Tg) increased 47% and 31% in PETG samples due to the MH and DH, respectively, while it increased 31% in CPE due to MH and was mainly maintained after the DH process. Nevertheless, in PLA, the MH produced an increase of 20% in LCTE value and the DH showed an increase of 33%. Dry heat treatment resulted in being more suitable for medical applications in which dimensional accuracy is not a key factor and there are no great mechanical demands (e.g., surgical guides).

2.
Polymers (Basel) ; 13(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494547

RESUMEN

This work focuses on the manufacturing and characterization of highly environmentally friendly lightweight sandwich structures based on polylactide (PLA) honeycomb cores and PLA-flax fabric laminate skins or facings. PLA honeycombs were manufactured using PLA sheets with different thicknesses ranging from 50 to 500 µm. The PLA sheets were shaped into semi-hexagonal profiles by hot-compression molding. After this stage, the different semi-hexagonal sheets were bonded together to give hexagonal panels. The skins were manufactured by hot-compression molding by stacking two Biotex flax/PLA fabrics with 40 wt% PLA fibers. The combined use of temperature (200 °C), pressure, and time (2 min) allowed PLA fibers to melt, flow, and fully embed the flax fabrics, thus leading to thin composite laminates to be used as skins. Sandwich structures were finally obtained by bonding the PLA honeycomb core with the PLA-flax skins using an epoxy adhesive. A thin PLA nonwoven was previously attached to the external hexagonal PLA core, to promote mechanical interlock between the core and the skins. The influence of the honeycomb core thickness on the final flexural and compression properties was analyzed. The obtained results indicate that the core thickness has a great influence on the flexural properties, which increases with core thickness; nevertheless, as expected, the bonding between the PLA honeycomb core and the skins is critical. Excellent results have been obtained with 10 and 20 mm thickness honeycombs with a core shear of about 0.60 and facing bending stresses of 31-33 MPa, which can be considered as candidates for technical applications. The ultimate load to the sample weight ratio reached values of 141.5 N·g-1 for composites with 20 mm thick PLA honeycombs, which is comparable to other technical composite sandwich structures. The bonding between the core and the skins is critical as poor adhesion does not allow load transfer and, while the procedure showed in this research gives interesting results, new developments are necessary to obtain standard properties on sandwich structures.

3.
Polymers (Basel) ; 12(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260291

RESUMEN

In the last few years, a remarkable growth in the use of functional polyesters has been observed.

4.
Materials (Basel) ; 13(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142698

RESUMEN

In the last decade, continuous research advances have been observed in the field of environmentally friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This research activity has become much more intense in the food packaging industry due to the high volume of waste it generates. Biopolymers are nowadays considered as among the most promising materials to solve these environmental problems. However, they still show inferior performance regarding both processability and end-use application. Blending currently represents a very cost-effective strategy to increase the ductility and impact resistance of biopolymers. Furthermore, different lignocellulosic materials are being explored to be used as reinforcing fillers in polymer matrices for improving the overall properties, lower the environmental impact, and also reduce cost. Moreover, the use of vegetable oils, waste derived liquids, and essential oils opens up novel opportunities as natural plasticizers, reactive compatibilizers or even active additives for the development of new polymer formulations with enhanced performance and improved sustainability profile.

5.
Polymers (Basel) ; 12(7)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640632

RESUMEN

This works focuses on the development of environmentally friendly composites with a partially biobased polyamide 610 (PA610), containing 63% biobased content, and a natural inorganic filler at the nanoscale, namely, halloysite nanotubes (HNTs). PA610 composites containing 10, 20, and 30 wt% HNTs were obtained by melt extrusion in a twin screw co-rotating extruder. The resulting composites were injection-molded for further characterization. The obtained materials were characterized to obtain reliable data about their mechanical, thermal, and morphological properties. The effect of the HNTs wt% on these properties was evaluated. From a mechanical standpoint, the addition of 30 wt% HNTs gave an increase in tensile modulus of twice the initial value, thus verifying how this type of natural load provides increased stiffness on injection molded parts. The materials prepared with HNTs slightly improved the thermal stability, while a noticeable improvement on thermomechanical resistance over a wide temperature range was observed with increasing HNTs content. The obtained results indicate that high biobased content composites can be obtained with an engineering thermoplastic, i.e., PA610, and a natural inorganic nanotube-shaped filler, i.e., HNTs, with balanced mechanical properties and attractive behavior against high temperature.

6.
Polymers (Basel) ; 12(6)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575881

RESUMEN

In the present study, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] was reinforced with hydroxyapatite nanoparticles (nHA) to produce novel nanocomposites for potential uses in bone reconstruction. Contents of nHA in the 2.5-20 wt % range were incorporated into P(3HB-co-3HHx) by melt compounding and the resulting pellets were shaped into parts by injection molding. The addition of nHA improved the mechanical strength and the thermomechanical resistance of the microbial copolyester parts. In particular, the addition of 20 wt % of nHA increased the tensile (Et) and flexural (Ef) moduli by approximately 64% and 61%, respectively. At the highest contents, however, the nanoparticles tended to agglomerate, and the ductility, toughness, and thermal stability of the parts also declined. The P(3HB-co-3HHx) parts filled with nHA contents of up to 10 wt % matched more closely the mechanical properties of the native bone in terms of strength and ductility when compared with metal alloys and other biopolymers used in bone tissue engineering. This fact, in combination with their biocompatibility, enables the development of nanocomposite parts to be applied as low-stress implantable devices that can promote bone reconstruction and be reabsorbed into the human body.

7.
Polymers (Basel) ; 12(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403400

RESUMEN

Eco-efficient Wood Plastic Composites (WPCs) have been obtained using poly(hydroxybutyrate-co-hexanoate) (PHBH) as the polymer matrix, and almond shell flour (ASF), a by-product from the agro-food industry, as filler/reinforcement. These WPCs were prepared with different amounts of lignocellulosic fillers (wt %), namely 10, 20 and 30. The mechanical characterization of these WPCs showed an important increase in their stiffness with increasing the wt % ASF content. In addition, lower tensile strength and impact strength were obtained. The field emission scanning electron microscopy (FESEM) study revealed the lack of continuity and poor adhesion among the PHBH-ASF interface. Even with the only addition of 10 wt % ASF, these green composites become highly brittle. Nevertheless, for real applications, the WPC with 30 wt % ASF is the most attracting material since it contributes to lowering the overall cost of the WPC and can be manufactured by injection moulding, but its properties are really compromised due to the lack of compatibility between the hydrophobic PHBH matrix and the hydrophilic lignocellulosic filler. To minimize this phenomenon, 10 and 20 phr (weight parts of OLA-Oligomeric Lactic Acid per one hundred weight parts of PHBH) were added to PHBH/ASF (30 wt % ASF) composites. Differential scanning calorimetry (DSC) suggested poor plasticization effect of OLA on PHBH-ASF composites. Nevertheless, the most important property OLA can provide to PHBH/ASF composites is somewhat compatibilization since some mechanical ductile properties are improved with OLA addition. The study by thermomechanical analysis (TMA), confirmed the increase of the coefficient of linear thermal expansion (CLTE) with increasing OLA content. The dynamic mechanical characterization (DTMA), revealed higher storage modulus, E', with increasing ASF. Moreover, DTMA results confirmed poor plasticization of OLA on PHBH-ASF (30 wt % ASF) composites, but interesting compatibilization effects.

8.
Polymers (Basel) ; 12(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936575

RESUMEN

In the present study, partially bio-based polyethylene terephthalate (bio-PET) was melt-mixed at 15-45 wt% with recycled polyethylene terephthalate (r-PET) obtained from remnants of the injection blowing process of contaminant-free food-use bottles. The resultant compounded materials were thereafter shaped into pieces by injection molding for characterization. Poly(styrene-co-glycidyl methacrylate) (PS-co-GMA) was added at 1-5 parts per hundred resin (phr) of polyester blend during the extrusion process to counteract the ductility and toughness reduction that occurred in the bio-PET pieces after the incorporation of r-PET. This random copolymer effectively acted as a chain extender in the polyester blend, resulting in injection-molded pieces with slightly higher mechanical resistance properties and nearly the same ductility and toughness than those of neat bio-PET. In particular, for the polyester blend containing 45 wt% of r-PET, elongation at break (εb) increased from 10.8% to 378.8% after the addition of 5 phr of PS-co-GMA, while impact strength also improved from 1.84 kJ·m-2 to 2.52 kJ·m-2. The mechanical enhancement attained was related to the formation of branched and larger macromolecules by a mechanism of chain extension based on the reaction of the multiple glycidyl methacrylate (GMA) groups present in PS-co-GMA with the hydroxyl (-OH) and carboxyl (-COOH) terminal groups of both bio-PET and r-PET. Furthermore, all the polyester blend pieces showed thermal and dimensional stabilities similar to those of neat bio-PET, remaining stable up to more than 400 °C. Therefore, the use low contents of the tested multi-functional copolymer can successfully restore the properties of bio-based but non-biodegradable polyesters during melt reprocessing with their recycled petrochemical counterparts and an effective mechanical recycling is achieved.

9.
Polymers (Basel) ; 11(12)2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31847359

RESUMEN

This work reports the effect of the addition of an oligomer of lactic acid (OLA), in the 5-20 wt% range, on the processing and properties of polylactide (PLA) pieces prepared by injection molding. The obtained results suggested that the here-tested OLA mainly performs as an impact modifier for PLA, showing a percentage increase in the impact strength of approximately 171% for the injection-molded pieces containing 15 wt% OLA. A slight plasticization was observed by the decrease of the glass transition temperature (Tg) of PLA of up to 12.5 °C. The OLA addition also promoted a reduction of the cold crystallization temperature (Tcc) of more than 10 °C due to an increased motion of the biopolymer chains and the potential nucleating effect of the short oligomer chains. Moreover, the shape memory behavior of the PLA samples was characterized by flexural tests with different deformation angles, that is, 15°, 30°, 60°, and 90°. The obtained results confirmed the extraordinary effect of OLA on the shape memory recovery (Rr) of PLA, which increased linearly as the OLA loading increased. In particular, the OLA-containing PLA samples were able to successfully recover over 95% of their original shape for low deformation angles, while they still reached nearly 70% of recovery for the highest angles. Therefore, the present OLA can be successfully used as a novel additive to improve the toughness and shape memory behavior of compostable packaging articles based on PLA in the new frame of the Circular Economy.

10.
Polymers (Basel) ; 12(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878014

RESUMEN

This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications.

11.
Polymers (Basel) ; 11(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756897

RESUMEN

This research work aims to study the influence of the reprocessing cycles on the mechanical, thermal, and thermomechanical properties of polylactide (PLA). To this end, PLA was subjected to as many as six extrusion cycles and the resultant pellets were shaped into pieces by injection molding. Mechanical characterization revealed that the PLA pieces presented relatively similar properties up to the third reprocessing cycle, whereas further cycles induced an intense reduction in ductility and toughness. The effect of the reprocessing cycles was also studied by the changes in the melt fluidity, which showed a significant increase after four reprocessing cycles. An increase in the bio-polyester chain mobility was also attained with the number of the reprocessing cycles that subsequently favored an increase in crystallinity of PLA. A visual inspection indicated that PLA developed certain yellowing and the pieces also became less transparent with the increasing number of reprocessing cycles. Therefore, the obtained results showed that PLA suffers a slight degradation after one or two reprocessing cycles whereas performance impairment becomes more evident above the fourth reprocessing cycle. This finding suggests that the mechanical recycling of PLA for up to three cycles of extrusion and subsequent injection molding is technically feasible.

12.
Polymers (Basel) ; 11(8)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443257

RESUMEN

This research deals with the influence of different curing and post-curing temperatures on the mechanical and thermomechanical properties as well as the gel time of an epoxy resin prepared by the reaction of diglycidyl ether of bisphenol A (DGEBA) with an amine hardener and a reactive diluent derived from plants at 31 wt %. The highest performance was obtained for the resins cured at moderate-to-high temperatures, that is, 80 ° C and 90 ° C , which additionally showed a significant reduction in the gel time. This effect was ascribed to the formation of a stronger polymer network by an extended cross-linking process of the polymer chains during the resin manufacturing. Furthermore, post-curing at either 125 ° C   or 150 ° C yielded thermosets with higher mechanical strength and, more interestingly, improved toughness, particularly for the samples previously cured at moderate temperatures. In particular, the partially bio-based epoxy resin cured at 80 ° C and post-cured at 150 ° C for 1 h and 30 min, respectively, showed the most balanced performance due to the formation of a more homogeneous cross-linked structure.

13.
Polymers (Basel) ; 11(3)2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30960375

RESUMEN

This research presents a cure kinetics study of an epoxy system consisting of a partially bio-sourced resin based on diglycidyl ether of bisphenol A (DGEBA) with amine hardener and a biobased reactive diluent from plants representing 31 wt %. The kinetic study has been carried out using differential scanning calorimetry (DSC) under non-isothermal conditions at different heating rates. Integral and derivative isoconversional methods or model free kinetics (MFK) have been applied to the experimental data in order to evaluate the apparent activation energy, Ea, followed by the application of the appropriate reaction model. The bio-sourced system showed activation energy that is independent of the extent of conversion, with Ea values between 57 and 62 kJ·mol-1, corresponding to typical activation energies of conventional epoxy resins. The reaction model was studied by comparing the calculated y(α) and z(α) functions with standard master plot curves. A two-parameter autocatalytic kinetic model of Sesták⁻Berggren [SB(m,n)] was assessed as the most suitable reaction model to describe the curing kinetics of the epoxy resins studied since it showed an excellent agreement with the experimental data.

14.
Materials (Basel) ; 12(4)2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30791485

RESUMEN

This study reports the effect of poly(butylene succinate-co-adipate) (PBSA) on the mechanical performance and shape memory behavior of poly(lactic acid) (PLA) specimens that were manufactured by injection molding and hot-press molding. The poor miscibility between PLA and PBSA was minimized by the addition of an epoxy styrene-acrylic oligomer (ESAO), which was commercially named Joncryl®. It was incorporated during the extrusion process. Tensile, impact strength, and hardness tests were carried out following international standards. PLA/PBSA blends with improved mechanical properties were obtained, which highlighted the sample that was compatibilized with ESAO, leading to a remarkable enhancement in elongation at break, but showing poor shape memory behaviour. Field Emission Scanning Electron Microscopy (FESEM) images showed how the ductile properties were improved, while PBSA loading increased, thus leading to minimizing the brittleness of neat PLA. The differential scanning calorimetry (DSC) analysis revealed the low miscibility between these two polymers and the improving effect of PBSA in PLA crystallization. The bending test carried out on the sheets of PLA/PBSA blends showed the direct influence that the PBSA has on the reduction of the shape memory that is intrinsically offered by neat PLA.

15.
Materials (Basel) ; 11(11)2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30400300

RESUMEN

In this work poly(butylene succinate) (PBS) composites with varying loads of almond shell flour (ASF) in the 10⁻50 wt % were manufactured by extrusion and subsequent injection molding thus showing the feasibility of these combined manufacturing processes for composites up to 50 wt % ASF. A vegetable oil-derived compatibilizer, maleinized linseed oil (MLO), was used in PBS/ASF composites with a constant ASF to MLO (wt/wt) ratio of 10.0:1.5. Mechanical properties of PBS/ASF/MLO composites were obtained by standard tensile, hardness, and impact tests. The morphology of these composites was studied by field emission scanning electron microscopy-FESEM) and the main thermal properties were obtained by differential scanning calorimetry (DSC), dynamical mechanical-thermal analysis (DMTA), thermomechanical analysis (TMA), and thermogravimetry (TGA). As the ASF loading increased, a decrease in maximum tensile strength could be detected due to the presence of ASF filler and a plasticization effect provided by MLO which also provided a compatibilization effect due to the interaction of succinic anhydride polar groups contained in MLO with hydroxyl groups in both PBS (hydroxyl terminal groups) and ASF (hydroxyl groups in cellulose). FESEM study reveals a positive contribution of MLO to embed ASF particles into the PBS matrix, thus leading to balanced mechanical properties. Varying ASF loading on PBS composites represents an environmentally-friendly solution to broaden PBS uses at the industrial level while the use of MLO contributes to overcome or minimize the lack of interaction between the hydrophobic PBS matrix and the highly hydrophilic ASF filler.

16.
Polymers (Basel) ; 10(1)2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30966040

RESUMEN

Ternary blends with a constant poly(lactic acid) (PLA) content (60 wt %) and varying amounts of poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) were manufactured by one step melt blending process followed by injection moulding, with the main aim of improving the low intrinsic toughness of PLA. Mechanical properties were obtained from tensile and Charpy impact tests. The miscibility and morphology of the system was studied by thermal analysis and field emission scanning electron microscopy (FESEM). The obtained results showed a clear phase separation, thus indicating poor miscibility between these three biopolyesters, i.e., PLA, the continuous component with dispersed PHB and PCL domains in the form of different sphere size. Nevertheless, the high fragility of PLA was remarkably reduced, as detected by the Charpy impact test. In accordance with the decrease in brittleness, a remarkable increase in elongation at break is achieved, with increasing PCL load due to its flexibility; in addition, increasing PCL load provides thermal stability at high temperatures. Thus, tailored materials can be manufactured by melt blending PLA, PHB, and PCL in different percentages to offer a wide range of biodegradable polymer blends.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...