Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541580

RESUMEN

This paper presents the results of research on the microstructure, mechanical, and tribological properties of Cu/0.5 wt.% MWCNT (multi-walled carbon nanotube) sintered composite materials produced by powder metallurgy. The purpose of this research was to investigate the impact of carbon nanotube modifications on the uniformity of their dispersion and the effectiveness of their bonding with the matrix. The MWCNTs were modified by chemical oxidation. Additionally, a modification of the ingredient mixing method utilizing ultrasonic frequencies was employed. The tests were carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers hardness tests, static compression tests, and wear tests using the pin-on-disc method. Furthermore, mechanical properties and strain distribution analyses of the micro-specimens were conducted using the Micro-Fatigue System (MFS). The implemented modifications had a positive effect on the dispersion of MWCNTs in the copper matrix and on the mechanical and tribological properties of the sinters.

2.
Materials (Basel) ; 16(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687649

RESUMEN

The aim of this paper is to analyse the mechanical properties of butt joints between S355 steel and 6061-T6 aluminium alloy, as well as their relationship to changes in the structure of the material caused by welding. The effect of the tool offset was analysed in particular. For the analysis, tensile tests were carried out using macro- and mini-specimens taken from S355/AA6061-T6 joints and base materials. In addition, the macro- and microstructure of the joints was determined, the hardness profiles in the joints were analysed, and fractographic analysis of the fractures of the specimens was carried out. Based on the results of the macro- and microstructure examinations, typical friction stir welding (FSW) joint zones were characterised. The microstructure was observed in the interface line of the materials on the root side, the negative effect of which on the quality of the joint was confirmed by digital image correlation (DIC) strain analysis during the monotonic tensile test. The highest average value of su = 141 MPa for the entire joint was obtained for a 0.4 mm tool offset. The highest average value of su = 185 MPa for the selected joint layer was obtained for a 0.3 mm tool offset. Fracturing of the joint in the selected layer for the tool offset values of 0.3 mm and 0.4 mm occurred in the weld nugget zone (WNZ) where the lowest hardness was recorded.

3.
Materials (Basel) ; 16(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37763536

RESUMEN

The study presents an analysis of S355J2+N steel and AA5083 aluminum alloy welded structural joints using explosion welded transition joints of reduced thickness. The transition joint thickness reduction significantly hinders the welding of the joints due to the risk of damage to the Al/steel interface as a result of the high temperatures during welding. In the previous article, the strength of the transition joint was analyzed but ship structures, apart from static loads, are subjected to many different cyclical loads. Welded structural joints are analyzed to determine the welding influence on the fatigue life and fracture type of the transition joints. The results of the fatigue tests show that the fatigue damage in the specimens occurs in the aluminum welded joint, and not in the explosively welded joint. The damage obtained was characteristic of cruciform welded joint specimens and both types of root and toe damage occurred. Based on the obtained results, fatigue curves for the joint were determined and compared to the fatigue curves for the AA5083 base material. The experimental fatigue curve was also compared with the design curve for welded aluminum structures from Eurocode. The conducted analysis showed the possibility of using Al/steel explosion welded transition joints of reduced thickness to transfer cyclical loads.

4.
Materials (Basel) ; 13(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752004

RESUMEN

Digital image correlation (DIC) is a non-contact optical method that allows measuring displacements on a plane used to determine the strains caused by external loads of a structural element (mechanical or thermal). Currently, digital image correlation is a widely used experimental technique to assess the mechanical behavior of materials, in particular cracking characteristics and destruction methods of various structural elements. In this paper, the DIC method is applied to determine local strains of titanium alloy Ti6Al4V specimen. The samples used in the tests were made with two different technologies: (a) from a drawn bar by machining process; and (b) by the additive manufacturing method Direct Metal Laser Sintering (DMLS). The aim of the paper is to present the mechanical properties test results of the Ti6Al4V titanium alloy produced by the DMLS additive manufacturing under static loads using the digital image correlation method. As a result of the tests carried out on the drawn bar specimens, it was concluded that the change in the measurement base affects the difference in the Young's E modulus value in the range from 89.2 to 103.8 GPa. However, for samples formed using the DMLS method, the change in the Young's modulus value was from 112.9 to 115.3 GPa for the same measurement base.

5.
Materials (Basel) ; 13(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414122

RESUMEN

The study presents an analysis of the cracking process of explosive welded layered material AA2519-AA1050-Ti6Al4V (Al-Ti laminate) at ambient (293 K) and reduced (223 and 77 K) temperatures. Fracture toughness tests were conducted for specimens made of base materials and Al-Ti laminate. As a result of loading, delamination cracking occurred in the bonding layer of specimens made from Al-Ti laminate. To define the crack mechanisms that occur at the tested temperatures, a fracture analysis was made using a scanning electron microscope. Moreover, acoustic emission (AE) signals were recorded while loading. AE signals were segregated to link their groups with respective cracking process mechanisms. Numerical models of the tested specimens were developed, taking into account the complexity of the laminate structure and the ambiguity of the cracking process. A load simulation using the finite element method FEM allowed calculating stress distributions in the local area in the crack tip of the Al-Ti laminate specimens, which enabled the explanation of significant material cracking process development aspects. Results analysis showed an influence of interlayer delamination crack growth on the process of the Al-Ti laminate specimen cracking and the level of KQ characteristics at different temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...