Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Front Mol Biosci ; 10: 1082915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825198

RESUMEN

Background: Around 40% of ER+/HER2-breast carcinomas (BC) present mutations in the PIK3CA gene. Assessment of PIK3CA mutational status is required to identify patients eligible for treatment with PI3Kα inhibitors, with alpelisib currently the only approved tyrosine kinase inhibitor in this setting. U-PIK project aimed to conduct a ring trial to validate and implement the PIK3CA mutation testing in several Portuguese centers, decentralizing it and optimizing its quality at national level. Methods: Eight Tester centers selected two samples of patients with advanced ER+/HER2- BC and generated eight replicates of each (n = 16). PIK3CA mutational status was assessed in two rounds. Six centers used the cobas® PIK3CA mutation test, and two used PCR and Sanger sequencing. In parallel, two reference centers (IPATIMUP and the Portuguese Institute of Oncology [IPO]-Porto) performed PIK3CA mutation testing by NGS in the two rounds. The quality of molecular reports describing the results was also assessed. Testing results and molecular reports were received and analyzed by U-PIK coordinators: IPATIMUP, IPO-Porto, and IPO-Lisboa. Results: Overall, five centers achieved a concordance rate with NGS results (allele frequency [AF] ≥5%) of 100%, one of 94%, one of 93%, and one of 87.5%, considering the overall performance in the two testing rounds. NGS reassessment of discrepancies in the results of the methods used by the Tester centers and the reference centers identified one probable false positive and two mutations with low AF (1-3%, at the analytical sensitivity threshold), interpreted as subclonal variants with heterogeneous representation in the tissue sections processed by the respective centers. The analysis of molecular reports revealed the need to implement the use of appropriate sequence variant nomenclature with the identification of reference sequences (HGVS-nomenclature) and to state the tumor cell content in each sample. Conclusion: The concordance rates between the method used by each tester center and NGS validate the use of the PIK3CA mutational status test performed at these centers in clinical practice in patients with advanced ER+/HER2- BC.

3.
Methods Mol Biol ; 2310: 1-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095994

RESUMEN

Several studies have indicated the presence of microRNAs (miRNAs) within mitochondria although the origin, as well as the biological function, of these mitochondrially located miRNAs is largely unknown. The identification and significance of this subcellular localization is gaining increasing relevance to the pathogenesis of certain disease states. Here, we describe the isolation of highly purified mitochondria from rat liver by differential centrifugation, followed by RNAse A treatment to eliminate contaminating RNA. The coupled extraction of total RNA and protein is a more efficient design for allowing the downstream evaluation of miRNA and protein expression in mitochondria.


Asunto(s)
Fraccionamiento Celular , MicroARNs/aislamiento & purificación , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , Ratas , Ribonucleasa Pancreática/metabolismo , Ultracentrifugación
4.
Cell Death Discov ; 5: 68, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30774996

RESUMEN

Colon cancer has been proposed to be sustained by a small subpopulation of stem-like cells with unique properties allowing them to survive conventional therapies and drive tumor recurrence. Identification of targetable signaling pathways contributing to malignant stem-like cell maintenance may therefore translate into new therapeutic strategies to overcome drug resistance. Here we demonstrated that MEK5/ERK5 signaling activation is associated with stem-like malignant phenotypes. Conversely, using a panel of cell line-derived three-dimensional models, we showed that ERK5 inhibition markedly suppresses the molecular and functional features of colon cancer stem-like cells. Particularly, pharmacological inhibition of ERK5 using XMD8-92 reduced the rate of primary and secondary sphere formation, the expression of pluripotency transcription factors SOX2, NANOG, and OCT4, and the proportion of tumor cells with increased ALDH activity. Notably, this was further associated with increased sensitivity to 5-fluorouracil-based chemotherapy. Mechanistically, ERK5 inhibition resulted in decreased IL-8 expression and NF-κB transcriptional activity, suggesting a possible ERK5/NF-κB/IL-8 signaling axis regulating stem-like cell malignancy. Taken together, our results provide proof of principle that ERK5-targeted inhibition may be a promising therapeutic approach to eliminate drug-resistant cancer stem-like cells and improve colon cancer treatment.

5.
Biomolecules ; 8(3)2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018273

RESUMEN

To discover new inhibitors against the human colon carcinoma HCT116 cell line, two quantitative structure⁻activity relationship (QSAR) studies using molecular and nuclear magnetic resonance (NMR) descriptors were developed through exploration of machine learning techniques and using the value of half maximal inhibitory concentration (IC50). In the first approach, A, regression models were developed using a total of 7339 molecules that were extracted from the ChEMBL and ZINC databases and recent literature. The performance of the regression models was successfully evaluated by internal and external validations, the best model achieved R² of 0.75 and 0.73 and root mean square error (RMSE) of 0.66 and 0.69 for the training and test sets, respectively. With the inherent time-consuming efforts of working with natural products (NPs), we conceived a new NP drug hit discovery strategy that consists in frontloading samples with 1D NMR descriptors to predict compounds with anticancer activity prior to bioactivity screening for NPs discovery, approach B. The NMR QSAR classification models were built using 1D NMR data (¹H and 13C) as descriptors, from 50 crude extracts, 55 fractions and five pure compounds obtained from actinobacteria isolated from marine sediments collected off the Madeira Archipelago. The overall predictability accuracies of the best model exceeded 63% for both training and test sets.


Asunto(s)
Actinobacteria/aislamiento & purificación , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Actinobacteria/química , Antineoplásicos/química , Productos Biológicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Máquina de Vectores de Soporte
6.
PLoS One ; 13(1): e0191607, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29360852

RESUMEN

MicroRNAs (miRNAs) regulate a wide variety of biological processes, including tumourigenesis. Altered miRNA expression is associated with deregulation of signalling pathways, which in turn cause abnormal cell growth and de-differentiation, contributing to cancer. miR-143 and miR-145 are anti-tumourigenic and influence the sensitivity of tumour cells to chemotherapy and targeted therapy. Comparative proteomic analysis was performed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145. Immunoblotting analysis validated the proteomic data in stable and transient miRNA overexpression conditions in human colon cancer cells. We show that approximately 100 proteins are differentially expressed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145 compared to Empty control cells. Further, Gene Ontology and pathway enrichment analysis indicated that proteins involved in specific cell signalling pathways such as cell death, response to oxidative stress, and protein folding might be modulated by these miRNAs. In particular, antioxidant enzyme superoxide dismutase 1 (SOD1) was downregulated by stable expression of either miR-143 or miR-145. Further, SOD1 gain-of-function experiments rescued cells from miR-143-induced oxidative stress. Moreover, miR-143 overexpression increased oxaliplatin-induced apoptosis associated with reactive oxygen species generation, which was abrogated by genetic and pharmacological inhibition of oxidative stress. Overall, miR-143 might circumvent resistance of colon cancer cells to oxaliplatin via increased oxidative stress in HCT116 human colon cancer cells.


Asunto(s)
Muerte Celular , Neoplasias del Colon/patología , MicroARNs/genética , Estrés Oxidativo , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Expresión Génica , Células HCT116 , Humanos , Superóxido Dismutasa-1/genética
8.
Cell Death Dis ; 8(4): e2748, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406477

RESUMEN

microRNAs were recently suggested to contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a disease lacking specific pharmacological treatments. In that regard, nuclear receptors are arising as key molecular targets for the treatment of nonalcoholic steatohepatitis (NASH). Here we show that, in a typical model of NASH-associated liver damage, microRNA-21 (miR-21) ablation results in a progressive decrease in steatosis, inflammation and lipoapoptosis, with impairment of fibrosis. In a complementary fast food (FF) diet NASH model, mimicking features of the metabolic syndrome, miR-21 levels increase in both liver and muscle, concomitantly with decreased expression of peroxisome proliferator-activated receptor α (PPARα), a key miR-21 target. Strikingly, miR-21 knockout mice fed the FF diet supplemented with farnesoid X receptor (FXR) agonist obeticholic acid (OCA) display minimal steatosis, inflammation, oxidative stress and cholesterol accumulation. In addition, lipoprotein metabolism was restored, including decreased fatty acid uptake and polyunsaturation, and liver and muscle insulin sensitivity fully reinstated. Finally, the miR-21/PPARα axis was found amplified in liver and muscle biopsies, and in serum, of NAFLD patients, co-substantiating its role in the development of the metabolic syndrome. By unveiling that miR-21 abrogation, together with FXR activation by OCA, significantly improves whole body metabolic parameters in NASH, our results highlight the therapeutic potential of nuclear receptor multi-targeting therapies for NAFLD.


Asunto(s)
Apoptosis , Ácido Quenodesoxicólico/análogos & derivados , Comida Rápida/efectos adversos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/terapia , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Ácido Quenodesoxicólico/farmacología , Modelos Animales de Enfermedad , Inflamación/etiología , Inflamación/genética , Inflamación/metabolismo , Inflamación/terapia , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
9.
J Nat Prod ; 79(10): 2624-2634, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27704811

RESUMEN

Phytochemical investigation of the roots of the African medicinal plant Tabernaemontana elegans led to the isolation of three new (1-3) and two known (4 and 5) bisindole alkaloids of the vobasinyl-iboga type. The structures of 1-3 were assigned by spectroscopic methods, mainly using 1D and 2D NMR experiments. All of the isolated compounds were evaluated for their cytotoxicity against HCT116 colon and HepG2 liver carcinoma cells by the MTS metabolism assay. Compounds 1-3 and 5 were found to be cytotoxic to HCT116 colon cancer cells, displaying IC50 values in the range 8.4 to >10 µM. However, the compounds did not display significant cytotoxicity against HepG2 cancer cells. The cytotoxicity of compounds 1-3 and 5 was corroborated using a lactate dehydrogenase assay. Hoechst staining and nuclear morphology assessment and caspase-3/7 activity assays were also performed for investigating the activity of compounds 1-3 and 5 as apoptosis inducers. The induced inhibition of proliferation of HCT116 cells by compounds 1 and 2 was associated with G1 phase arrest, while compounds 3 and 5 induced G2/M cell cycle arrest. These results showed that the new vobasinyl-iboga alkaloids 1-3 and compound 5 are strong inducers of apoptosis and cell cycle arrest in HCT116 colon cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/farmacología , Plantas Medicinales/química , Tabernaemontana/química , África , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Células Hep G2 , Humanos , Ibogaína/farmacología , Alcaloides Indólicos/química , L-Lactato Deshidrogenasa/metabolismo , Conformación Molecular , Estructura Molecular , Mozambique , Resonancia Magnética Nuclear Biomolecular , Raíces de Plantas/química
10.
Front Microbiol ; 7: 1594, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27774089

RESUMEN

Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry.

11.
J Ethnopharmacol ; 194: 236-244, 2016 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-27616029

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tabernaemontana elegans Stapf. (Apocynaceae) is a medicinal plant traditionally used in African countries to treat cancer. AIMS OF THE STUDY: To discover new apoptosis inducing lead compounds from T. elegans and provide scientific validation of the ethnopharmacological use of this plant. MATERIALS AND METHODS: Through fractionation, (3'R)-hydroxytaberanelegantine C (1), a vobasinyl-iboga bisindole alkaloid, was isolated from a cytotoxic alkaloid fraction of the methanol extract of T. elegans roots. Its structure was identified by spectroscopic methods, mainly 1D and 2D NMR experiments. Compound 1 was evaluated for its ability to induce apoptosis in HCT116 and SW620 colon and HepG2 liver carcinoma cells. The cell viability of compound 1 was evaluated by the MTS and lactate dehydrogenase (LDH) assays. Induction of apoptosis was analyzed through Guava ViaCount assay, by flow cytometry, caspase-3/7 activity assays and evaluation of nuclear morphology by Hoechst staining. To determine the molecular pathways elicited by 1 exposure, immunoblot analysis was also performed. RESULTS: (3'R)-hydroxytaberanelegantine C (1) displayed strong apoptosis induction activity as compared to 5-fluorouracil (5-FU), the most used anticancer agent in colorectal cancer treatment. In the MTS assay, compound 1 exhibited IC50 values similar or lower than 5-FU in the three cell lines tested. The IC50 value of 1 was also calculated in CCD18co normal human colon fibroblasts. The lactate dehydrogenase assay showed increased LDH release by compound 1, and the Guava ViaCount assay revealed that 1 significantly increased the incidence of apoptosis to a further extent than 5-FU. Moreover, the induction of apoptosis was corroborated by evaluation of nuclear morphology by Hoechst staining and caspase-3/7 activity assays of 1 treated cells. As expected, in immunoblot analysis, compound 1 treatment led to poly(ADP-ribose) polymerase cleavage. This was accompanied by decreased anti-apoptotic proteins Bcl-2 and XIAP steady state levels in all three cancer cell lines tested. CONCLUSIONS: Compound 1 showed remarkable induction of apoptosis in HCT116, SW620 and HepG2 cells. Together, the results suggest that compound 1 is a promising lead structure for inducing apoptosis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Alcaloides Indólicos/farmacología , Apocynaceae/química , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier
12.
Drug Discov Today ; 21(10): 1654-1663, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27320690

RESUMEN

Conventional mitogen-activated protein kinase (MAPK) family members are among the most sought-after oncogenic effectors for the development of novel human cancer treatment strategies. MEK5/ERK5 has been the less-studied MAPK subfamily, despite its increasingly demonstrated relevance in the growth, survival, and differentiation of normal cells. MEK5/ERK5 signalling has already been proposed to have pivotal roles in several cancer hallmarks, and to mediate the effects of a range of oncogenes. Accumulating evidence indicates the contribution of MEK5/ERK5 signalling to therapy resistance and the benefits of using MEK5/ERK5 inhibitory strategies in the treatment of human cancer. Here, we explore the major known contributions of MEK5/ERK5 signalling to the onset and progression of several types of cancer, and highlight the potential clinical relevance of targeting MEK5/ERK5 pathways.


Asunto(s)
MAP Quinasa Quinasa 5/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neoplasias/metabolismo , Animales , Humanos , Neoplasias/tratamiento farmacológico , Transducción de Señal
14.
Oncotarget ; 7(23): 34322-40, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27144434

RESUMEN

The MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients. In colon cancer cells, 5-FU exposure impaired endogenous KRAS/MEK5/ERK5 expression and/or activation. In turn, MEK5 constitutive activation reduced 5-FU-induced cytotoxicity. Using genetic and pharmacological approaches, we showed that ERK5 inhibition increased caspase-3/7 activity and apoptosis following 5-FU exposure. Mechanistically, this was further associated with increased p53 transcriptional activation of p21 and PUMA. In addition, ERK5 inhibition increased the response of HCT116 p53+/+ cells to 5-FU, but failed to sensitize HCT116 p53-/- cells to the cytotoxic effects of this chemotherapeutic agent, suggesting a p53-dependent axis mediating 5-FU sensitization. Finally, ERK5 inhibition using XMD8-92 was shown to increase the antitumor effects of 5-FU in a murine subcutaneous xenograft model, enhancing apoptosis while markedly reducing tumor growth. Collectively, our results suggest that ERK5-targeted inhibition provides a promising therapeutic approach to overcome resistance to 5-FU-based chemotherapy and improve colon cancer treatment.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Fluorouracilo/farmacología , MAP Quinasa Quinasa 5/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Benzodiazepinonas/farmacología , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/genética , Activación Enzimática/efectos de los fármacos , Células HCT116 , Humanos , MAP Quinasa Quinasa 5/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Dalton Trans ; 45(30): 11926-30, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27216868

RESUMEN

Eight ruthenium(ii) compounds of the general formula [(η(5)-C5H5)Ru(N-N)(PPh3)][PF6] were rationally designed, exhibiting high cytotoxicity against HCT116 human colon cancer cells, with IC50 between 14.56 and 1.56 µM; importantly, compounds 5Ru and 6Ru are the first reported ruthenium glycoconjugates exploiting glucose transporters, widely overexpressed in cancer, for cellular uptake.


Asunto(s)
Antineoplásicos/uso terapéutico , Carbohidratos/química , Neoplasias del Colon/tratamiento farmacológico , Complejos de Coordinación/uso terapéutico , Proteínas de Transporte de Monosacáridos/metabolismo , Compuestos de Rutenio/química , Antineoplásicos/química , Transporte Biológico , Neoplasias del Colon/patología , Complejos de Coordinación/química , Células HCT116 , Humanos , Modelos Moleculares
16.
Oncotarget ; 7(8): 9368-87, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26824186

RESUMEN

miR-143 and miR-145 are downregulated in colon cancer. Here, we tested the effect of restoring these miRNAs on sensitization to cetuximab in mutant KRAS (HCT116 and SW480) and wild-type KRAS (SW48) colon cancer cells. We evaluated cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and the modulation of signaling pathways involved in immune effector cell-mediated elimination of cancer cells. Stable miR-143 or miR-145 overexpression increased cell sensitivity to cetuximab, resulting in a significant increase of cetuximab-mediated ADCC independently of KRAS status. Importantly, HCT116 cells overexpressing these miRNAs triggered apoptosis in result of cetuximab-mediated ADCC, effected by peripheral blood mononuclear cells (p < 0.01). This was associated with increased apoptosis and caspase-3/7 activity, and reduced Bcl-2 protein expression (p < 0.01). In addition, caspase inhibition abrogated cetuximab-mediated ADCC in HCT116 cells overexpressing either miR-143 or miR-145 (p < 0.01). Furthermore, Bcl-2 silencing led to high level of cetuximab-mediated ADCC, compared to control siRNA (p < 0.05). Importantly, granzyme B inhibition, abrogated cetuximab-mediated ADCC, reducing caspase-3/7 activity (p < 0.01). Collectively, our data suggests that re-introduction of miR-143 or miR-145 may provide a new approach for development of therapeutic strategies to re-sensitize colon cancer cells to cetuximab by stimulating cetuximab-dependent ADCC to induce cell death.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Cetuximab/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , MicroARNs/genética , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Genes bcl-2/genética , Granzimas/antagonistas & inhibidores , Células HCT116 , Humanos , MicroARNs/biosíntesis , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
17.
Adv Exp Med Biol ; 887: 31-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26662985

RESUMEN

Mitochondria are pivotal organelles involved in the regulation of a myriad of crucial biological processes, including cell survival and cell death, rendering mitochondrial dysfunction a relevant step in numerous pathophysiological processes. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that add a new layer of complexity to the control of gene expression. miRNAs function as master regulators and fine-tuners of gene expression, primarily via posttranscriptional mechanisms, and are increasingly demonstrated as a paramount class of endogenous molecules with relevant diagnostic, prognostic, and therapeutic applications. miRNAs and other RNA interference have recently been reported to be present in mitochondria from several species, and we are now beginning to unveil mitochondrial miRNA transport mechanisms, biological function and targets to ascertain their role in this unexplored niche. Here, we describe miRNA biogenesis and present key findings regarding miRNA localization to mitochondria, origin, putative biological function, and implications for human disease.


Asunto(s)
MicroARNs/genética , Mitocondrias/genética , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/análisis , Transcripción Genética
18.
Sci Rep ; 5: 17528, 2015 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-26621219

RESUMEN

MicroRNAs (miRNAs/miRs) are key regulators of liver metabolism, while toxic bile acids participate in the development of several liver diseases. We previously demonstrated that deoxycholic acid (DCA), a cytotoxic bile acid implicated in the pathogenesis of non-alcoholic fatty liver disease, inhibits miR-21 expression in hepatocytes. Here, we investigated the mechanisms by which DCA modulates miR-21 and whether miR-21 contributes for DCA-induced cytotoxicity. DCA inhibited miR-21 expression in primary rat hepatocytes in a dose-dependent manner, and increased miR-21 pro-apoptotic target programmed cell death 4 (PDCD4) and apoptosis. Both miR-21 overexpression and PDCD4 silencing hampered DCA-induced cell death. Further, DCA decreased NF-κB activity, shown to represent an upstream mechanism leading to modulation of the miR-21/PDCD4 pathway. In fact, NF-κB overexpression or constitutive activation halted miR-21-dependent apoptosis by DCA while opposite results were observed upon NF-κB inhibition. In turn, DCA-induced oxidative stress resulted in caspase-2 activation and NF-κB/miR-21 inhibition, in a PIDD-dependent manner. Finally, modulation of the NF-κB/miR-21/PDCD4 pro-apoptotic pathway by DCA was also shown to occur in the rat liver in vivo. These signalling circuits may constitute appealing targets for bile acid-associated liver pathologies.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Ácido Desoxicólico/farmacología , Hepatocitos/metabolismo , MicroARNs/metabolismo , FN-kappa B/antagonistas & inhibidores , Animales , Células Cultivadas , Ácido Desoxicólico/efectos adversos , Masculino , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Transducción de Señal/efectos de los fármacos
19.
Bioorg Med Chem Lett ; 25(17): 3556-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26169128

RESUMEN

The derivatization of dregamine (1) and tabernaemontanine (2), two epimeric monoterpene indole alkaloids isolated from the methanol extract of the roots of Tabernaemontana elegans, with several hydrazines and hydroxylamine gave rise to ten new derivatives (3-12). Their structures were assigned by spectroscopic methods, including 2D NMR experiments. The compounds were tested for their ability to induce apoptosis in HCT116 colon and HepG2 liver cancer cells. Firstly, the cytotoxicity of all compounds (1-12) was evaluated in both cell lines by the MTS assay. The most active compounds (6, 9, 10) along with 1 and 2 were further investigated for their apoptosis induction capability by Guava ViaCount flow cytometry assays, nuclear morphology evaluation by Hoechst staining, and caspase-3/7 activity assays. Compounds 9 and 10 showed promising apoptosis induction profile, displaying higher activities than 5-fluorouracil, the mainstay in colon cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Hidrazonas/farmacología , Alcaloides Indólicos/farmacología , Tabernaemontana/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Colon/efectos de los fármacos , Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Células HCT116 , Células Hep G2 , Humanos , Hidrazonas/química , Hidrazonas/aislamiento & purificación , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Raíces de Plantas/química
20.
PLoS One ; 10(5): e0126891, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26024321

RESUMEN

BACKGROUND: A guanine-rich strand within the promoter of the KRAS gene can fold into an intra-molecular G-quadruplex structure (G4), which has an important role in the regulation of KRAS transcription. We have previously identified indolo[3,2-b]quinolines with a 7-carboxylate group and three alkylamine side chains (IQ3A) as effective G4 stabilizers and promising selective anticancer leads. Herein we investigated the anticancer mechanism of action of these compounds, which we hypothesized due to stabilization of the G4 sequence in the KRAS promoter and subsequent down-regulation of gene expression. METHODOLOGY/PRINCIPAL FINDINGS: IQ3A compounds showed greater stabilization of G4 compared to duplex DNA structures and reduced KRAS promoter activity in a dual luciferase reporter assay. Moreover, IQ3A compounds showed high anti-proliferative activity in HCT116 and SW620 colon cancer cells (IC50 < 2.69 µM), without eliciting cell death in non-malignant HEK293T human embryonic kidney, and human colon fibroblasts CCD18co. IQ3A compounds significantly reduced KRAS mRNA and protein steady-state levels at IC50 concentrations, and increased p53 protein steady-state levels and cell death by apoptosis in HCT116 cells (mut KRAS, wt p53). Furthermore, KRAS silencing in HCT116 p53 wild-type (p53(+/+)) and null (p53(-/-)) isogenic cell lines induced a higher level of cell death, and a higher IQ3A-induced cell death in HCT116 p53(+/+) compared to HCT116 p53(-/-). CONCLUSIONS: Herein we provide evidence that G4 ligands such as IQ3A compounds can target G4 motifs present in KRAS promoter, down-regulate the expression of the mutant KRAS gene through inhibition of transcription and translation, and induce cell death by apoptosis in colon cancer cell lines. Thus, targeting KRAS at the genomic level with G4 ligands may be a new anticancer therapy strategy for colon cancer.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , G-Cuádruplex/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Quinolinas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/genética , Genes ras , Células HCT116 , Células HEK293 , Humanos , Regiones Promotoras Genéticas , Quinolinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA