Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Intervalo de año de publicación
1.
ChemMedChem ; : e202400134, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778632

RESUMEN

The establishment of the Young Scientists Network (YSN) by the European Federation for Medicinal Chemistry (EFMC) served as a proactive response to the evolving landscape of the scientific community. The YSN aims to assist early-career medicinal chemists and chemical biologists by responding to emerging themes, such as the influence of social media, shifts in gender balance within the scientific population, and evolving educational opportunities. The YSN also ensures that the upcoming generation of scientists actively contributes to shape the EFMC's strategic direction while addressing their specific needs. Initially conceived as a general concept, YSN has evolved into a proactive and dynamic team which demonstrates a tangible impact. To boost the impact of the YSN and involve additional motivated young scientists, we have adopted a novel organization, and structured the team in seven working groups (WGs). Herein, we will discuss the tasks of the different WGs as well as the activities planned for the near future. We believe this structure will strengthen the pivotal role YSN has already played in serving medicinal chemists and chemical biologists in Europe. The YSN now has the structure and motivation to pave the way to attract young scientists across Europe and to give them the stage within EFMC.

2.
ACS Infect Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717116

RESUMEN

Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood-brain barrier permeability. Subsequently, extensive structure-activity-relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.

3.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38399421

RESUMEN

Covalent inhibitors have experienced a revival in medicinal chemistry and chemical biology in recent decades [...].

5.
Chem Sci ; 15(2): 683-691, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179525

RESUMEN

Class I phosphoinositide 3-kinases (PI3Ks) control cellular growth, but are also essential in insulin signaling and glucose homeostasis. Pan-PI3K inhibitors thus generate substantial adverse effects, a reality that has plagued drug development against this target class. We present here evidence that a high affinity binding module with the capacity to target all class I PI3K isoforms can facilitate selective degradation of the most frequently mutated class I isoform, PI3Kα, when incorporated into a cereblon-targeted (CRBN) degrader. A systematic proteomics study guided the fine tuning of molecular features to optimize degrader selectivity and potency. Our work resulted in the creation of WJ112-14, a PI3Kα-specific nanomolar degrader that should serve as an important research tool for studying PI3K biology. Given the toxicities observed in the clinic with unselective PI3Kα inhibitors, the results here offer a new approach toward selectively targeting this frequently mutated oncogenic driver.

8.
Molecules ; 28(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37049935

RESUMEN

Chiral natural compounds are often biosynthesized in an enantiomerically pure fashion, and stereochemistry plays a pivotal role in biological activity. Herein, we investigated the significance of chirality for nature-inspired 3-Br-acivicin (3-BA) and its derivatives. The three unnatural isomers of 3-BA and its ester and amide derivatives were prepared and characterized for their antimalarial activity. Only the (5S, αS) isomers displayed significant antiplasmodial activity, revealing that their uptake might be mediated by the L-amino acid transport system, which is known to mediate the acivicin membrane's permeability. In addition, we investigated the inhibitory activity towards Plasmodium falciparum glyceraldehyde 3-phosphate dehydrogenase (PfGAPDH) since it is involved in the multitarget mechanism of action of 3-BA. Molecular modeling has shed light on the structural and stereochemical requirements for an efficient interaction with PfGAPDH, leading to covalent irreversible binding and enzyme inactivation. While stereochemistry affects the target binding only for two subclasses (1a-d and 4a-d), it leads to significant differences in the antimalarial activity for all subclasses, suggesting that a stereoselective uptake might be responsible for the enhanced biological activity of the (5S, αS) isomers.


Asunto(s)
Antimaláricos , Antimaláricos/farmacología , Antimaláricos/química , Isoxazoles/química , Plasmodium falciparum , Modelos Moleculares
9.
Eur J Med Chem ; 254: 115286, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37058971

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key glycolytic enzyme, plays a crucial role in the energy metabolism of cancer cells and has been proposed as a valuable target for the development of anticancer agents. Among a series of 5-substituted 3-bromo-4,5-dihydroisoxazole (BDHI) derivatives, we identified the spirocyclic compound 11, which is able to covalently inactivate recombinant human GAPDH (hGAPDH) with a faster reactivity than koningic acid, one of the most potent hGAPDH inhibitors known to date. Computational studies confirmed that conformational rigidification is crucial to stabilize the interaction of the inhibitor with the binding site, thus favoring the subsequent covalent bond formation. Investigation of intrinsic warhead reactivity at different pH disclosed the negligible reactivity of 11 with free thiols, highlighting its ability to selectively react with the activated cysteine of hGAPDH with respect to other sulfhydryl groups. Compound 11 strongly reduced cancer cell growth in four different pancreatic cancer cell lines and its antiproliferative activity correlated well with the intracellular inhibition of hGAPDH. Overall, our results qualify 11 as a potent hGAPDH covalent inhibitor with a moderate drug-like reactivity that could be further exploited to develop anticancer agents.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas , Glucólisis , Neoplasias Pancreáticas/tratamiento farmacológico , Compuestos de Sulfhidrilo
10.
Eur J Med Chem ; 248: 115038, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634458

RESUMEN

Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.


Asunto(s)
Neoplasias , Serina-Treonina Quinasas TOR , Ratas , Animales , Masculino , Humanos , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Morfolinas/farmacología , Morfolinas/química , Sirolimus/farmacología , Sirolimus/uso terapéutico , Neoplasias/tratamiento farmacológico , Piranos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
11.
ChemMedChem ; 18(1): e202200245, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538747

RESUMEN

Diversity in science refers to cultivating talent, while promoting full inclusion across the community. In medicinal chemistry and chemical biology, it enhances creativity and encourages contributions from multiple perspectives, leading to better decision making and broader scientific impact. The European Federation for Medicinal chemistry and Chemical biology (EFMC) embraces and promotes diversity, to ensure representation of all talents, and enable equality of opportunity through fairness and transparency. EFMC has historically paid continuous attention to diversity in terms of culture, geography and equilibrium between academia and industry, with over the last few years a focus on increasing gender balance, aiming at a fair representation of the scientific community and equal opportunities independently of gender. EFMC promotes cultural diversity as it reinforces openness and mutual respect. All scientific organizations of a scope compatible with its remit are welcome within EFMC, where their members benefit from a welcoming, psychologically safe, and stimulating environment. Herein, we describe the state of diversity within the EFMC, how the situation has evolved over the years and where diversity should be further encouraged.


Asunto(s)
Química Farmacéutica , Química Farmacéutica/métodos
12.
Nature ; 609(7928): 681-683, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104488

Asunto(s)
Encéfalo , Cabeza
13.
J Am Chem Soc ; 144(14): 6326-6342, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35353516

RESUMEN

Covalent protein kinase inhibitors exploit currently noncatalytic cysteines in the adenosine 5'-triphosphate (ATP)-binding site via electrophiles directly appended to a reversible-inhibitor scaffold. Here, we delineate a path to target solvent-exposed cysteines at a distance >10 Å from an ATP-site-directed core module and produce potent covalent phosphoinositide 3-kinase α (PI3Kα) inhibitors. First, reactive warheads are used to reach out to Cys862 on PI3Kα, and second, enones are replaced with druglike warheads while linkers are optimized. The systematic investigation of intrinsic warhead reactivity (kchem), rate of covalent bond formation and proximity (kinact and reaction space volume Vr), and integration of structure data, kinetic and structural modeling, led to the guided identification of high-quality, covalent chemical probes. A novel stochastic approach provided direct access to the calculation of overall reaction rates as a function of kchem, kinact, Ki, and Vr, which was validated with compounds with varied linker lengths. X-ray crystallography, protein mass spectrometry (MS), and NanoBRET assays confirmed covalent bond formation of the acrylamide warhead and Cys862. In rat liver microsomes, compounds 19 and 22 outperformed the rapidly metabolized CNX-1351, the only known PI3Kα irreversible inhibitor. Washout experiments in cancer cell lines with mutated, constitutively activated PI3Kα showed a long-lasting inhibition of PI3Kα. In SKOV3 cells, compounds 19 and 22 revealed PI3Kß-dependent signaling, which was sensitive to TGX221. Compounds 19 and 22 thus qualify as specific chemical probes to explore PI3Kα-selective signaling branches. The proposed approach is generally suited to develop covalent tools targeting distal, unexplored Cys residues in biologically active enzymes.


Asunto(s)
Cisteína , Fosfatidilinositol 3-Quinasa , Adenosina Trifosfato , Animales , Cisteína/química , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Ratas
14.
Chimia (Aarau) ; 75(12): 1037-1044, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34920774

RESUMEN

Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Vuelo Espacial , Animales , Ratones
15.
Molecules ; 26(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34299479

RESUMEN

A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure-activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 µM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.


Asunto(s)
Antiparasitarios/síntesis química , Antiparasitarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Diseño de Fármacos , Leishmaniasis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Fosfolípidos/farmacología , Enfermedad de Chagas/parasitología , Química Clic , Humanos , Leishmania/efectos de los fármacos , Leishmaniasis/parasitología , Relación Estructura-Actividad , Trypanosoma cruzi/efectos de los fármacos
16.
ChemMedChem ; 16(18): 2744-2759, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34114360

RESUMEN

Dysregulation of the mechanistic target of rapamycin (mTOR) pathway is implicated in cancer and neurological disorder, which identifies mTOR inhibition as promising strategy for the treatment of a variety of human disorders. First-generation mTOR inhibitors include rapamycin and its analogues (rapalogs) which act as allosteric inhibitors of TORC1. Structurally unrelated, ATP-competitive inhibitors that directly target the mTOR catalytic site inhibit both TORC1 and TORC2. Here, we review investigations of chemical scaffolds explored for the development of highly selective ATP-competitive mTOR kinase inhibitors (TORKi). Extensive medicinal chemistry campaigns allowed to overcome challenges related to structural similarity between mTOR and the phosphoinositide 3-kinase (PI3K) family. A broad region of chemical space is covered by TORKi. Here, the investigation of chemical substitutions and physicochemical properties has shed light on the compounds' ability to cross the blood brain barrier (BBB). This work provides insights supporting the optimization of TORKi for the treatment of cancer and central nervous system disorders.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismo
17.
RSC Med Chem ; 12(4): 579-583, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34041490

RESUMEN

Highly selective mTOR inhibitors have been discovered through the exploration of the heteroaromatic ring engaging the binding affinity region in mTOR kinase. Compound 11 showed predicted BBB permeability in a MDCK-MDR1 permeability in vitro assay, being the first pyrimido-pyrrolo-oxazine with potential application in the treatment of neurological disorders.

18.
Elife ; 102021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661099

RESUMEN

Class I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular functions, with the class IB PI3K catalytic subunit (p110γ) playing key roles in immune signalling. p110γ is a key factor in inflammatory diseases and has been identified as a therapeutic target for cancers due to its immunomodulatory role. Using a combined biochemical/biophysical approach, we have revealed insight into regulation of kinase activity, specifically defining how immunodeficiency and oncogenic mutations of R1021 in the C-terminus can inactivate or activate enzyme activity. Screening of inhibitors using HDX-MS revealed that activation loop-binding inhibitors induce allosteric conformational changes that mimic those in the R1021C mutant. Structural analysis of advanced PI3K inhibitors in clinical development revealed novel binding pockets that can be exploited for further therapeutic development. Overall, this work provides unique insights into regulatory mechanisms that control PI3Kγ kinase activity and shows a framework for the design of PI3K isoform and mutant selective inhibitors.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/genética , Síndromes de Inmunodeficiencia/genética , Mutación , Fosfatidilinositol 3-Quinasa Clase Ib/química , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Humanos
19.
J Med Chem ; 63(22): 13595-13617, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33166139

RESUMEN

The mechanistic target of rapamycin (mTOR) pathway is hyperactivated in cancer and neurological disorders. Rapalogs and mTOR kinase inhibitors (TORKi) have recently been applied to alleviate epileptic seizures in tuberous sclerosis complex (TSC). Herein, we describe a pharmacophore exploration to identify a highly potent, selective, brain penetrant TORKi. An extensive investigation of the morpholine ring engaging the mTOR solvent exposed region led to the discovery of PQR626 (8). 8 displayed excellent brain penetration and was well-tolerated in mice. In mice with a conditionally inactivated Tsc1 gene in glia, 8 significantly reduced the loss of Tsc1-induced mortality at 50 mg/kg p.o. twice a day. 8 overcomes the metabolic liabilities of PQR620 (52), the first-in-class brain penetrant TORKi showing efficacy in a TSC mouse model. The improved stability in human hepatocytes, excellent brain penetration, and efficacy in Tsc1GFAPCKO mice qualify 8 as a potential therapeutic candidate for the treatment of neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Morfolinas/administración & dosificación , Morfolinas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Administración Oral , Animales , Encéfalo/efectos de los fármacos , Perros , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Morfolinas/química , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
20.
ACS Med Chem Lett ; 11(5): 1028-1034, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435421

RESUMEN

Sigma receptors (SRs) are recognized as valuable targets for the treatment of neurodegenerative disorders. A series of novel SRs ligands were designed by combining key pharmacophoric amines (i.e., benzylpiperidine or benzylpiperazine) with new 1,3-dithiolane-based heterocycles and their bioisosters. The new compounds exhibited a low nanomolar affinity for sigma-1 and sigma-2 receptors. Five selected compounds were evaluated for their neuroprotective capacity on SH-SY5Y neuroblastoma cell line. They were able to counteract the neurotoxicity induced by rotenone, oligomycin and NMDA. Competition studies with PB212, a S1R antagonist, confirmed the involvement of S1R in neuroprotection from the oxidative stress induced by rotenone. Electrophysiological experiments performed on cortical neurons in culture highlighted the compounds ability to reduce NMDA-evoked currents, suggesting a negative allosteric modulator activity toward the NMDA receptor. Altogether these results qualify our novel dithiolane derivatives as potential agents for fighting neurodegeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...