Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(10): 1505-1515, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37620586

RESUMEN

DNA replication introduces thousands of RNA primers into the lagging strand that need to be removed for replication to be completed. In Escherichia coli when the replicative DNA polymerase Pol IIIα terminates at a previously synthesized RNA primer, DNA Pol I takes over and continues DNA synthesis while displacing the downstream RNA primer. The displaced primer is subsequently excised by an endonuclease, followed by the sealing of the nick by a DNA ligase. Yet how the sequential actions of Pol IIIα, Pol I polymerase, Pol I endonuclease and DNA ligase are coordinated is poorly defined. Here we show that each enzymatic activity prepares the DNA substrate for the next activity, creating an efficient four-point molecular handover. The cryogenic-electron microscopy structure of Pol I bound to a DNA substrate with both an upstream and downstream primer reveals how it displaces the primer in a manner analogous to the monomeric helicases. Moreover, we find that in addition to its flap-directed nuclease activity, the endonuclease domain of Pol I also specifically cuts at the RNA-DNA junction, thus marking the end of the RNA primer and creating a 5' end that is a suitable substrate for the ligase activity of LigA once all RNA has been removed.


Asunto(s)
ADN Polimerasa III , ADN , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN/química , Replicación del ADN , ARN/metabolismo , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN Ligasa (ATP)/metabolismo , Endonucleasas/metabolismo
2.
Nucleic Acids Res ; 50(11): 6224-6234, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35670670

RESUMEN

DNA mismatch repair removes mis-incorporated bases after DNA replication and reduces the error rate a 100-1000-fold. After recognition of a mismatch, a large section of up to a thousand nucleotides is removed from the daughter strand followed by re-synthesis. How these opposite activities are coordinated is poorly understood. Here we show that the Escherichia coli MutL protein binds to the 3' end of the resected strand and blocks access of Pol I and Pol III. The cryo-EM structure of an 85-kDa MutL-DNA complex, determined to 3.7 Å resolution, reveals a unique DNA binding mode that positions MutL at the 3' end of a primer-template, but not at a 5' resected DNA end or a blunt DNA end. Hence, our work reveals a novel role for MutL in the final stages of mismatch repair by preventing premature DNA synthesis during removal of the mismatched strand.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Escherichia coli , Proteínas MutL , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas MutL/genética
3.
ACS Infect Dis ; 8(3): 612-625, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143160

RESUMEN

Natural products provide a rich source of potential antimicrobials for treating infectious diseases for which drug resistance has emerged. Foremost among these diseases is tuberculosis. Assessment of the antimycobacterial activity of nargenicin, a natural product that targets the replicative DNA polymerase of Staphylococcus aureus, revealed that it is a bactericidal genotoxin that induces a DNA damage response in Mycobacterium tuberculosis (Mtb) and inhibits growth by blocking the replicative DNA polymerase, DnaE1. Cryo-electron microscopy revealed that binding of nargenicin to Mtb DnaE1 requires the DNA substrate such that nargenicin is wedged between the terminal base pair and the polymerase and occupies the position of both the incoming nucleotide and templating base. Comparative analysis across three bacterial species suggests that the activity of nargenicin is partly attributable to the DNA binding affinity of the replicative polymerase. This work has laid the foundation for target-led drug discovery efforts focused on Mtb DnaE1.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antibacterianos/farmacología , Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN , Humanos , Mycobacterium tuberculosis/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
4.
Nat Struct Mol Biol ; 29(1): 59-66, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35013597

RESUMEN

DNA mismatch repair detects and corrects mismatches introduced during DNA replication. The protein MutS scans for mismatches and coordinates the repair cascade. During this process, MutS undergoes multiple conformational changes in response to ATP binding, hydrolysis and release, but how ATP induces the various MutS conformations is incompletely understood. Here we present four cryogenic electron microscopy structures of Escherichia coli MutS at sequential stages of the ATP hydrolysis cycle that reveal how ATP binding and hydrolysis induce closing and opening of the MutS dimer, respectively. Biophysical analysis demonstrates how DNA binding modulates the ATPase cycle by prevention of hydrolysis during scanning and mismatch binding, while preventing ADP release in the sliding clamp state. Nucleotide release is achieved when MutS encounters single-stranded DNA that is produced during removal of the daughter strand. The combination of ATP binding and hydrolysis and its modulation by DNA enables MutS to adopt the different conformations needed to coordinate the sequential steps of the mismatch repair cascade.


Asunto(s)
Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Reparación de la Incompatibilidad de ADN , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/ultraestructura , Adenosina Difosfato/metabolismo , Dominio Catalítico , Escherichia coli , Hidrólisis , Modelos Moleculares , Unión Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...