Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Nutr ; 13(4): 1324-1393, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35802522

RESUMEN

The ASN Board of Directors appointed the Nutrition Research Task Force to develop a report on scientific methods used in nutrition science to advance discovery, interpretation, and application of knowledge in the field. The genesis of this report was growing concern about the tone of discourse among nutrition professionals and the implications of acrimony on the productive study and translation of nutrition science. Too often, honest differences of opinion are cast as conflicts instead of areas of needed collaboration. Recognition of the value (and limitations) of contributions from well-executed nutrition science derived from the various approaches used in the discipline, as well as appreciation of how their layering will yield the strongest evidence base, will provide a basis for greater productivity and impact. Greater collaborative efforts within the field of nutrition science will require an understanding that each method or approach has a place and function that should be valued and used together to create the nutrition evidence base. Precision nutrition was identified as an important emerging nutrition topic by the preponderance of task force members, and this theme was adopted for the report because it lent itself to integration of many approaches in nutrition science. Although the primary audience for this report is nutrition researchers and other nutrition professionals, a secondary aim is to develop a document useful for the various audiences that translate nutrition research, including journalists, clinicians, and policymakers. The intent is to promote accurate, transparent, verifiable evidence-based communication about nutrition science. This will facilitate reasoned interpretation and application of emerging findings and, thereby, improve understanding and trust in nutrition science and appropriate characterization, development, and adoption of recommendations.


Asunto(s)
Ciencias de la Nutrición , Proyectos de Investigación , Comités Consultivos , Humanos
2.
Epigenetics ; 16(1): 64-78, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32633672

RESUMEN

Alterations in environmentally sensitive epigenetic mechanisms (e.g., DNA methylation) influence axonal regeneration in the spinal cord following sharp injury. Conventional DNA methylation detection methods using sodium bisulphite treatment do not distinguish between methylated and hydroxymethylated forms of cytosine, meaning that past studies report a composite of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). To identify the distinct contributions of DNA methylation modifications to axonal regeneration, we collected spinal cord tissue after sharp injury from untreated adult F3 male rats with enhanced regeneration of injured spinal axons or controls, derived from folate- or water-treated F0 lineages, respectively. Genomic DNA was profiled for genome-wide 5hmC levels, revealing 658 differentially hydroxymethylated regions (DhMRs). Genomic profiling with whole genome bisulphite sequencing disclosed regeneration-related alterations in composite 5mC + 5hmC DNA methylation levels at 2,260 differentially methylated regions (DMRs). While pathway analyses revealed that differentially hydroxymethylated and methylated genes are linked to biologically relevant axon developmental pathways, only 22 genes harbour both DhMR and DMRs. Since these differential modifications were more than 60 kilobases on average away from each other, the large majority of differential hydroxymethylated and methylated regions are unique with distinct functions in the axonal regeneration phenotype. These data highlight the importance of distinguishing independent contributions of 5mC and 5hmC levels in the central nervous system, and denote discrete roles for DNA methylation modifications in spinal cord injury and regeneration in the context of transgenerational inheritance.


Asunto(s)
Axones/metabolismo , Metilación de ADN , Regeneración Nerviosa/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Epigénesis Genética , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Transcriptoma
3.
Methods ; 184: 53-60, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816396

RESUMEN

Advances in mass spectrometry (MS) have revolutionized the ability to measure global changes in histone post-translational modifications (PTMs). The method routinely quantifies over 60 modification states in a single sample, far exceeding the capabilities of traditional western blotting. Thus, MS-based histone analysis has become an increasingly popular tool for understanding how genetic and environmental factors influence epigenetic states. However, histone proteomics experiments exhibit unique challenges, such as batch-to-batch reproducibility, accurate peak integration, and noisy data. Here, we discuss the steps of histone PTM analysis, from sample preparation and peak integration to data analysis and validation. We outline a set of best practices for ensuring data quality, accurate normalization, and robust statistics. Using these practices, we quantify histone modifications in 5 human cell lines, revealing that each cell line exhibits a unique epigenetic signature. We also provide a reproducible workflow for histone PTM analysis in the form of an R script, which is freely available at https://github.com/DenuLab/HistoneAnalysisWorkflow.


Asunto(s)
Histonas/análisis , Espectrometría de Masas/normas , Procesamiento Proteico-Postraduccional , Proteómica/normas , Interpretación Estadística de Datos , Guías como Asunto , Código de Histonas , Histonas/metabolismo , Humanos , Espectrometría de Masas/métodos , Proteómica/métodos , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA