Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(7): 4330-4344, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022555

RESUMEN

Time-domain diffuse correlation spectroscopy (td-DCS) enables the depth discrimination in tissue's blood flow recovery, considering the fraction of photons detected with higher time of flight (TOF) and longer pathlength through the tissue. However, the recovery result depends on factors such as the instrument response function (IRF), analyzed TOF gate start time, gate width and the source-detector separation (SDS). In this research we evaluate the performance of the td-DCS technique at three SDSs of 1.5, 2 and 2.5 cm to recover cerebral blood flow (CBF). To do that we presented comprehensive characterization of the td-DCS system through a series of phantom experiments. First by quality metrices such as coefficient of variation and contrast-to-noise ratios, we identified optimal time gate(s) of the TOF to extract dynamics of particles. Then using sensitivity metrices, each SDS ability to detect dynamics of particles in superficial and deeper layer was evaluated. Finally, td-DCS at each SDS was tested on healthy volunteers during cuff occlusion test and breathing tasks. According to phantom measurements, the sensitivity to estimate perfusion within the deep layer located at depth of 1.5 cm from the surface can be increased more than two times when the SDS increases from 1.5 cm to 2.5 cm.

2.
J Vis ; 23(11): 76, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37733502

RESUMEN

In this contribution, we present experimental results of in vivo characterization of the photoreceptor's response to a chirped flickering white light stimulating the retina. We acquire the ORG signal with Spatio-Temporal Optical Coherence Tomography (STOC-T) setup, which combines both temporal and coherence gating to overcome limitations present in Full Field Fourier Domain Optical Coherence Tomography. From the acquired volumes, we extract the changes in optical path length (OPL) between the inner and outer photoreceptor junction (ISOS) and the cone outer segment tips (COST). We perform the measurements for frequencies ranging from 5 Hz to 50 Hz. The chirped flickering facilitates significantly shorter data acquisition time. We present results of in vivo measurement from three volunteers. Our results show that we can measure OPL changes between ISOS and COST occurring in response to a chirped flickering stimulation in a reproducible manner and resolve the amplitude of the response in the function of flicker frequency.


Asunto(s)
Luz , Retina , Humanos , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica
3.
iScience ; 25(12): 105513, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419849

RESUMEN

Despite the rapid development of optical imaging methods, high-resolution in vivo imaging with penetration into deeper tissue layers is still a major challenge. Optical coherence tomography (OCT) has been used successfully for non-invasive human retinal volumetric imaging in vivo, advancing the detection, diagnosis, and monitoring of various retinal diseases. However, there are important limitations of volumetric OCT imaging, especially coherent noise and the limited axial range over which high resolution images can be acquired. The limited range prevents simultaneous measurement of the retina and choroid with adequate lateral resolution. In this article, we address these limitations with a technique that we term spatio-temporal optical coherence tomography (STOC-T), which uses light with controlled spatial and temporal coherence and advanced signal processing methods. STOC-T enabled the acquisition of high-contrast and high-resolution coronal projection images of the retina and choroid at arbitrary depths.

4.
Biomed Opt Express ; 13(4): 2186-2201, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35519256

RESUMEN

For many years electroretinography (ERG) has been used for obtaining information about the retinal physiological function. More recently, a new technique called optoretinography (ORG) has been developed. In one form of this technique, the physiological response of retinal photoreceptors to visible light, resulting in a nanometric photoreceptor optical path length change, is measured by phase-sensitive optical coherence tomography (OCT). To date, a limited number of studies with phase-based ORG measured the retinal response to a flickering light stimulation. In this work, we use a spatio-temporal optical coherence tomography (STOC-T) system to capture optoretinograms with a flickering stimulus over a 1.7 × 0.85 mm2 area of a light-adapted retina located between the fovea and the optic nerve. We show that we can detect statistically-significant differences in the photoreceptor optical path length (OPL) modulation amplitudes in response to different flicker frequencies and with better signal to noise ratios (SNRs) than for a dark-adapted eye. We also demonstrate the ability to spatially map such response to a patterned stimulus with light stripes flickering at different frequencies, highlighting the prospect of characterizing the spatially-resolved temporal-frequency response of the retina with ORG.

5.
Opt Lett ; 47(4): 838-841, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167538

RESUMEN

Fourier-domain full-field optical coherence tomography (FD-FF-OCT) is an emerging tool for high-speed eye imaging. However, cross-talk formation in images limits the imaging depth. To this end, we have recently shown that reducing spatial coherence with a fast deformable membrane can suppress the noise but over a limited axial range and with substantial data processing. Here, we demonstrate that a multimode fiber with carefully chosen parameters enables cross-talk-free imaging over a long axial range and without significant artifacts. We also show that it can be used to image the human retina and choroid in vivo with exceptional contrast.


Asunto(s)
Retina , Tomografía de Coherencia Óptica , Artefactos , Humanos
6.
Biomed Opt Express ; 13(11): 5753-5774, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36733725

RESUMEN

Interferometric near-infrared spectroscopy (iNIRS) is an optical method that noninvasively measures the optical and dynamic properties of the human brain in vivo. However, the original iNIRS technique uses single-mode fibers for light collection, which reduces the detected light throughput. The reduced light throughput is compensated by the relatively long measurement or integration times (∼1 sec), which preclude monitoring of rapid blood flow changes that could be linked to neural activation. Here, we propose parallel interferometric near-infrared spectroscopy (πNIRS) to overcome this limitation. In πNIRS we use multi-mode fibers for light collection and a high-speed, two-dimensional camera for light detection. Each camera pixel acts effectively as a single iNIRS channel. So, the processed signals from each pixel are spatially averaged to reduce the overall integration time. Moreover, interferometric detection provides us with the unique capability of accessing complex information (amplitude and phase) about the light remitted from the sample, which with more than 8000 parallel channels, enabled us to sense the cerebral blood flow with only a 10 msec integration time (∼100x faster than conventional iNIRS). In this report, we have described the theoretical foundations and possible ways to implement πNIRS. Then, we developed a prototype continuous wave (CW) πNIRS system and validated it in liquid phantoms. We used our CW πNIRS to monitor the pulsatile blood flow in a human forearm in vivo. Finally, we demonstrated that CW πNIRS could monitor activation of the prefrontal cortex by recording the change in blood flow in the forehead of the subject while he was reading an unknown text.

7.
Biomed Opt Express ; 12(9): 5351-5367, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34692187

RESUMEN

Time-domain diffuse correlation spectroscopy (TD-DCS) is an emerging optical technique that enables noninvasive measurement of microvascular blood flow with photon path-length resolution. In TD-DCS, a picosecond pulsed laser with a long coherence length, adequate illumination power, and narrow instrument response function (IRF) is required, and satisfying all these features is challenging. To this purpose, in this study we characterized the performance of three different laser sources for TD-DCS. First, the sources were evaluated based on their emission spectrum and IRF. Then, we compared the signal-to-noise ratio and the sensitivity to velocity changes of scattering particles in a series of phantom measurements. We also compared the results for in vivo measurements, performing an arterial occlusion protocol on the forearm of three adult subjects. Overall, each laser has the potential to be successfully used both for laboratory and clinical applications. However, we found that the effects caused by the IRF are more significant than the effect of a limited temporal coherence.

8.
Opt Lett ; 46(6): 1413-1416, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720200

RESUMEN

Fourier-domain full-field optical coherence tomography (FD-FF-OCT) has recently emerged as a fast alternative to point-scanning confocal OCT in eye imaging. However, when imaging the cornea with FD-FF-OCT, a spatially coherent laser can focus down on the retina to a spot that exceeds the maximum permissible exposure level. Here we demonstrate that a long multimode fiber with a small core can be used to reduce the spatial coherence of the laser and, thus, enable ultrafast in vivo volumetric imaging of the human cornea without causing risk to the retina.


Asunto(s)
Córnea/diagnóstico por imagen , Análisis de Fourier , Tomografía de Coherencia Óptica , Humanos , Procesamiento de Imagen Asistido por Computador
9.
Sci Rep ; 11(1): 1817, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469124

RESUMEN

Monitoring of human tissue hemodynamics is invaluable in clinics as the proper blood flow regulates cellular-level metabolism. Time-domain diffuse correlation spectroscopy (TD-DCS) enables noninvasive blood flow measurements by analyzing temporal intensity fluctuations of the scattered light. With time-of-flight (TOF) resolution, TD-DCS should decompose the blood flow at different sample depths. For example, in the human head, it allows us to distinguish blood flows in the scalp, skull, or cortex. However, the tissues are typically polydisperse. So photons with a similar TOF can be scattered from structures that move at different speeds. Here, we introduce a novel approach that takes this problem into account and allows us to quantify the TOF-resolved blood flow of human tissue accurately. We apply this approach to monitor the blood flow index in the human forearm in vivo during the cuff occlusion challenge. We detect depth-dependent reactive hyperemia. Finally, we applied a controllable pressure to the human forehead in vivo to demonstrate that our approach can separate superficial from the deep blood flow. Our results can be beneficial for neuroimaging sensing applications that require short interoptode separation.


Asunto(s)
Flujo Sanguíneo Regional , Análisis Espectral/métodos , Frente/irrigación sanguínea , Humanos , Fantasmas de Imagen
10.
Biomed Opt Express ; 11(9): 5003-5016, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33014596

RESUMEN

We present in-vivo imaging of the mouse brain using custom made Gaussian beam optical coherence microscopy (OCM) with 800nm wavelength. We applied new instrumentation to longitudinal imaging of the glioblastoma (GBM) tumor microvasculature in the mouse brain. We have introduced new morphometric biomarkers that enable quantitative analysis of the development of GBM. We confirmed quantitatively an intensive angiogenesis in the tumor area between 3 and 14 days after GBM cells injection confirmed by considerably increased of morphometric parameters. Moreover, the OCM setup revealed heterogeneity and abnormality of newly formed vessels.

11.
Biomed Opt Express ; 11(5): 2849-2865, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32499965

RESUMEN

Corneal evaluation in ophthalmology necessitates cellular-resolution and fast imaging techniques that allow for accurate diagnoses. Currently, the fastest volumetric imaging technique is Fourier-domain full-field optical coherence tomography (FD-FF-OCT), which uses a fast camera and a rapidly tunable laser source. Here, we demonstrate high-resolution, high-speed, non-contact corneal volumetric imaging in vivo with FD-FF-OCT that can acquire a single 3D volume with a voxel rate of 7.8 GHz. The spatial coherence of the laser source was suppressed to prevent it from focusing on a spot on the retina, and therefore, exceeding the maximum permissible exposure (MPE). The inherently volumetric nature of FD-FF-OCT data enabled flattening of curved corneal layers. The acquired FD-FF-OCT images revealed corneal cellular structures, such as epithelium, stroma and endothelium, as well as subbasal and mid-stromal nerves.

12.
Opt Lett ; 45(6): 1293-1296, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32163948

RESUMEN

Spatiotemporal optical coherence (STOC) imaging is a new technique for suppressing coherent cross talk noise in Fourier-domain full-field optical coherence tomography (FD-FF-OCT). In STOC imaging, the time-varying inhomogeneous phase masks modulate the incident light to alter the interferometric signal. Resulting interference images are then processed as in standard FD-FF-OCT and averaged incoherently or coherently to produce cross-talk-free volumetric optical coherence tomography (OCT) images of the sample. Here, we show that coherent averaging is suitable when phase modulation is performed for both interferometer arms simultaneously. We explain the advantages of coherent over incoherent averaging. Specifically, we show that modulated signal, after coherent averaging, preserves lateral phase stability, enabling computational phase correction to compensate for geometrical aberrations. Ultimately, we employ it to correct for aberrations present in the image of the photoreceptor layer of the human retina that reveals otherwise invisible photoreceptor mosaics.


Asunto(s)
Tomografía de Coherencia Óptica/métodos , Adulto , Análisis de Fourier , Humanos , Imagenología Tridimensional/métodos , Imagenología Tridimensional/estadística & datos numéricos , Interferometría/métodos , Interferometría/estadística & datos numéricos , Fenómenos Ópticos , Células Fotorreceptoras de Vertebrados/citología , Retina/anatomía & histología , Retina/diagnóstico por imagen , Relación Señal-Ruido , Análisis Espacio-Temporal , Tomografía de Coherencia Óptica/estadística & datos numéricos
13.
Biomed Opt Express ; 10(12): 6390-6407, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853406

RESUMEN

Fourier-domain full-field optical coherence tomography (FD-FF-OCT) is currently the fastest volumetric imaging technique that is able to generate a single 3-D volume of retina in less than 9 ms, corresponding to a voxel rate of 7.8 GHz. FD-FF-OCT is based on a fast camera, a rapidly tunable laser source, and Fourier-domain signal detection. However, crosstalk appearing due to multiply scattered light corrupts images with the speckle pattern, and therefore, lowers image quality. Here, for the first time, we report on a system that can acquire essentially crosstalk-free volumes of the retina by using a fast deformable membrane. It enables the visualization of choroids and a clear delineation of the retinal layers that is not possible with conventional FD-FF-OCT.

14.
Biomed Opt Express ; 10(4): 2032-2054, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31086716

RESUMEN

Full-field swept-source optical coherence tomography (FF-SS-OCT) provides high-resolution depth-resolved images of the sample by parallel Fourier-domain interferometric detection. Although FF-SS-OCT implements high-speed volumetric imaging, it suffers from the cross-talk-generated noise from spatially coherent lasers. This noise reduces the transversal image resolution, which in turn, limits the wide adaptation of FF-SS-OCT for practical and clinical applications. Here, we introduce the novel spatiotemporal optical coherence (STOC) manipulation. In STOC the time-varying inhomogeneous phase masks are used to modulate the light incident on the sample. By properly adjusting these phase masks, the spatial coherence can be reduced. Consequently, the cross-talk-generated noise is suppressed, the transversal image resolution is improved by the factor of 2 , and sample features become visible. STOC approach is validated by imaging 1951 USAF resolution test chart covered by the diffuser, scattering phantom and the rat skin ex vivo. In all these cases STOC suppresses the cross-talk-generated noise, and importantly, do not compromise the transversal resolution. Thus, our method provides an enhancement of FF-SS-OCT that can be beneficial for imaging biological samples.

15.
Opt Lett ; 43(23): 5881-5884, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499965

RESUMEN

Quantifying light transport in turbid media is a long-standing challenge. This challenge arises from the difficulty in experimentally separating unscattered, ballistic light from forward scattered light. Correlation gating is a new approach that numerically separates light paths based on statistical dynamics of the optical field. Here we apply correlation gating with interferometric near-infrared spectroscopy (iNIRS) to separate and independently quantify ballistic and scattered light transmitted through thick samples. First, we present evidence that correlation gating improves the isolation of ballistic light in a thick, intrinsically dynamic medium with Brownian motion. Then, from a single set of iNIRS transmission measurements, we determine the ballistic attenuation coefficient and group refractive index from the time-of-flight (TOF) resolved static intensity, and we determine the reduced scattering and absorption coefficients from the diffusive part of the TOF resolved dynamic intensity. Finally, we show that correlation gating is applicable in intrinsically static media in which motion is induced externally. Thus, for the first time, to the best of our knowledge, the key optical properties of a turbid medium can be derived from a single set of transmission measurements.

16.
Opt Lett ; 42(3): 591-594, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28146535

RESUMEN

Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.


Asunto(s)
Absorción Fisicoquímica , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Circulación Cerebrovascular , Interferometría/métodos , Dispersión de Radiación , Espectroscopía Infrarroja Corta/métodos , Animales , Masculino , Ratones
17.
Opt Express ; 24(1): 329-54, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26832264

RESUMEN

We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality.


Asunto(s)
Interferometría/instrumentación , Rayos Láser , Nefelometría y Turbidimetría/instrumentación , Espectroscopía Infrarroja Corta/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
18.
Optica ; 3(12): 1471-1476, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30381798

RESUMEN

Sensing and imaging methods based on the dynamic scattering of coherent light (including laser speckle, laser Doppler, diffuse correlation spectroscopy, dynamic light scattering, and diffusing wave spectroscopy) quantify scatterer motion using light intensity fluctuations. The underlying optical field autocorrelation, rather than being measured directly, is typically inferred from the intensity autocorrelation through the Siegert relationship, assuming that the scattered field obeys Gaussian statistics. Here, we demonstrate interferometric near-infrared spectroscopy for measuring the time-of-flight (TOF) resolved field and intensity autocorrelations in turbid media. We find that the Siegert relationship breaks down for short TOFs due to static paths whose optical field does not decorrelate over experimental time scales. We also show that eliminating such paths by polarization gating restores the validity of the Siegert relationship. The unique capability of measuring optical field autocorrelations, as demonstrated here, enables the study of non-Gaussian and non-ergodic light scattering processes. Moreover, direct measurements of field autocorrelations are more efficient than indirect measurements based on intensity autocorrelations. Thus, optical field measurements may improve the quantiffcation of scatterer dynamics with coherent light.

19.
Opt Lett ; 38(22): 4817-20, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24322140

RESUMEN

The novel spatiotemporal optical coherence manipulation technique, which allows one to tailor the second-order coherence properties of a light beam, is introduced. With the use of an interferometric setup we show that the basic measure of the contrast of interference fringes, i.e., Michelson's visibility, can be controlled across the interference pattern by modulating the phase of the spectral degree of coherence.


Asunto(s)
Interferometría/instrumentación , Iluminación/instrumentación , Refractometría/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA