Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biotechnol Prog ; : e3477, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699906

RESUMEN

Media preparation parameters contribute significantly to media quality, cell culture performance, productivity, and product quality. Establishing proper media preparation procedures is critical for ensuring a robust CHO cell culture process. Process analytical technology (PAT) enables unique ways to quantify assessments and improve media quality. Here, cell culture media were prepared under a wide range of temperatures (40-80°C) and pH (7.6-10.0). Media quality profiles were compared using three real-time PATs: Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and excitation-emission matrix (EEM) spectroscopy. FTIR and Raman spectroscopies identified shifts in media quality under high preparation temperature (80°C) and at differing preparation pH which negatively impacted monoclonal antibody (mAb) production. In fed-batch processes for production of three different mAbs, viable cell density (VCD) and cell viability were mostly unaffected under all media preparation temperatures, while titer and cell specific productivity of mAb decreased when cultured in basal and feed media prepared at 80°C. High feed preparation pH alone was tolerated but cell growth and productivity profiles deviated from the control condition. Further, charge variants (main, acidic, basic species) and glycosylation (G0F, afucosylation, and high mannose) were examined. Statistically significant differences were observed for one or more of these quality attributes with any shifts in media preparation. In this study, we demonstrated strong associations between media preparation conditions and cell growth, productivity, and product quality. The rapid evaluation of media by PAT implementation enabled more comprehensive understanding of different parameters on media quality and consequential effects on CHO cell culture.

2.
J Biotechnol ; 387: 79-88, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582408

RESUMEN

Among all the operating parameters that control the cell culture environment inside bioreactors, appropriate mixing and aeration are crucial to ensure sufficient oxygen supply, homogeneous mixing, and CO2 stripping. A model-based manufacturing facility fit approach was applied to define agitation and bottom air flow rates during the process scale-up from laboratory to manufacturing, of which computational fluid dynamics (CFD) was the core modeling tool. The realizable k-ε turbulent dispersed Eulerian gas-liquid flow model was established and validated using experimental values for the volumetric oxygen transfer coefficient (kLa). Model validation defined the process operating parameter ranges for application of the model, identified mixing issues (e.g., impeller flooding, dissolved oxygen gradients, etc.) and the impact of antifoam on kLa. Using the CFD simulation results as inputs to the models for oxygen demand, gas entrance velocity, and CO2 stripping aided in the design of the agitation and bottom air flow rates needed to meet cellular oxygen demand, control CO2 levels, mitigate risks for cell damage due to shear, foaming, as well as fire hazards due to high O2 levels in the bioreactor gas outlet. The recommended operating conditions led to the completion of five manufacturing runs with a 100% success rate. This model-based approach achieved a seamless scale-up and reduced the required number of at-scale development batches, resulting in cost and time savings of a cell culture commercialization process.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Hidrodinámica , Oxígeno , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación , Oxígeno/metabolismo , Oxígeno/análisis , Dióxido de Carbono/metabolismo , Simulación por Computador , Células CHO , Cricetulus , Modelos Biológicos , Animales
3.
Biotechnol Bioeng ; 121(1): 53-70, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37691172

RESUMEN

Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.


Asunto(s)
Dependovirus , Vectores Genéticos , Vectores Genéticos/genética , Dependovirus/genética , Técnicas de Cultivo de Célula , Terapia Genética
4.
Biotechnol J ; 18(7): e2200604, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029472

RESUMEN

Core fucosylation is a highly prevalent and significant feature of N-glycosylation in therapeutic monoclonal antibodies produced by mammalian cells where its absence (afucosylation) plays a key role in treatment safety and efficacy. Notably, even slight changes in the level of afucosylation can have a considerable impact on the antibody-dependent cell-mediated cytotoxicity. Therefore, implementing control over afucosylation levels is important in upstream manufacturing to maintain consistent quality across batches of product, since standard downstream processing does not change afucosylation. In this review, the influences and strategies to control afucosylation are presented. In particular, there is emphasis on upstream manufacturing culture parameters and media supplementation, as these offer particular advantages as control strategies over alternative approaches such as cell line engineering and chemical inhibitors. The review discusses the relationship between the afucosylation influences and the underlying cellular metabolism to promote increased process understanding. Also, briefly highlighted is the value of empirical and mechanistic models in evaluating and designing control methods for core fucosylation.


Asunto(s)
Anticuerpos Monoclonales , Fucosa , Animales , Cricetinae , Anticuerpos Monoclonales/metabolismo , Fucosa/metabolismo , Línea Celular , Glicosilación , Citotoxicidad Celular Dependiente de Anticuerpos , Cricetulus , Células CHO
5.
Biotechnol Prog ; 38(5): e3268, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35536540

RESUMEN

Charge variants represent a critical quality attribute that must be controlled during the development and manufacturing of monoclonal antibodies (mAb). Previously, we reported the development of a cost-effective enzymatic treatment capable of removing the C-terminal lysine from a mAb produced by a Chinese hamster ovary (CHO) GS cell line. This treatment resulted in a significant decrease in basic charge variants and a corresponding improvement in the main peak, enabling a longer cell culture production duration for titer improvement. Here, we describe this enzymatic treatment protocol in detail and demonstrate its applicability to two additional mAbs produced by distinct industrial cell lines. The simple addition of carboxypeptidase B (CpB) at a ratio of 1:10,000 (w/w) to whole cell cultures significantly improved the main peaks for both mAbs without affecting other critical quality attributes, including size exclusion chromatography impurities and N-glycans. Our results demonstrate that this in vitro CpB treatment protocol can be used as a platform strategy to improve main peak for mAbs that exhibit high levels of basic variants attributable to C-terminal lysines. An in vitro enzymatic treatment in general may be another good addition to existing in vivo CHO cell culture strategies for titer improvement and control of critical quality attributes.


Asunto(s)
Anticuerpos Monoclonales , Lisina , Animales , Anticuerpos Monoclonales/química , Células CHO , Carboxipeptidasa B , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Lisina/metabolismo , Polisacáridos
6.
Bioengineering (Basel) ; 9(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35447688

RESUMEN

Fed-batch process intensification with a significantly shorter culture duration or higher titer for monoclonal antibody (mAb) production by Chinese hamster ovary (CHO) cells can be achieved by implementing perfusion operation at the N-1 stage for biomanufacturing. N-1 perfusion seed with much higher final viable cell density (VCD) than a conventional N-1 batch seed can be used to significantly increase the inoculation VCD for the subsequent fed-batch production (referred as N stage), which results in a shorter cell growth phase, higher peak VCD, or higher titer. In this report, we incorporated a process analytical technology (PAT) tool into our N-1 perfusion platform, using an in-line capacitance probe to automatically adjust the perfusion rate based on real-time VCD measurements. The capacitance measurements correlated linearly with the offline VCD at all cell densities tested (i.e., up to 130 × 106 cells/mL). Online control of the perfusion rate via the cell-specific perfusion rate (CSPR) decreased media usage by approximately 25% when compared with a platform volume-specific perfusion rate approach and did not lead to any detrimental effects on cell growth. This PAT tool was applied to six mAbs, and a platform CSPR of 0.04 nL/cell/day was selected, which enabled rapid growth and maintenance of high viabilities for four of six cell lines. In addition, small-scale capacitance data were used in the scaling-up of N-1 perfusion processes in the pilot plant and in the GMP manufacturing suite. Implementing a platform approach based on capacitance measurements to control perfusion rates led to efficient process development of perfusion N-1 for supporting high-density CHO cell cultures for the fed-batch process intensification.

7.
Bioengineering (Basel) ; 9(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35447733

RESUMEN

Improving productivity to reduce the cost of biologics manufacturing and ensure that therapeutics can reach more patients remains a major challenge faced by the biopharmaceutical industry. Chinese hamster ovary (CHO) cell lines are commonly prepared for biomanufacturing by single cell cloning post-transfection and recovery, followed by lead clone screening, generation of a research cell bank (RCB), cell culture process development, and manufacturing of a master cell bank (MCB) to be used in early phase clinical manufacturing. In this study, it was found that an additional round of cloning and clone selection from an established monoclonal RCB or MCB (i.e., re-cloning) significantly improved titer for multiple late phase monoclonal antibody upstream processes. Quality attributes remained comparable between the processes using the parental clones and the re-clones. For two CHO cells expressing different antibodies, the re-clone performance was successfully scaled up at 500-L or at 2000-L bioreactor scales, demonstrating for the first time that the re-clone is suitable for late phase and commercial manufacturing processes for improvement of titer while maintaining comparable product quality to the early phase process.

8.
MAbs ; 14(1): 2060724, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35380922

RESUMEN

As of early 2022, the coronavirus disease 2019 (COVID-19) pandemic remains a substantial global health concern. Different treatments for COVID-19, such as anti-COVID-19 neutralizing monoclonal antibodies (mAbs), have been developed under tight timelines. Not only mAb product and clinical development but also chemistry, manufacturing, and controls (CMC) process development at pandemic speed are required to address this highly unmet patient need. CMC development consists of early- and late-stage process development to ensure sufficient mAb manufacturing yield and consistent product quality for patient safety and efficacy. Here, we report a case study of late-stage cell culture process development at pandemic speed for mAb1 and mAb2 production as a combination therapy for a highly unmet patient treatment. We completed late-stage cell culture process characterization (PC) within approximately 4 months from the cell culture process definition to the initiation of the manufacturing process performance qualification (PPQ) campaign for mAb1 and mAb2, in comparison to a standard one-year PC timeline. Different strategies were presented in detail at different PC steps, i.e., pre-PC risk assessment, scale-down model development and qualification, formal PC experiments, and in-process control strategy development for a successful PPQ campaign that did not sacrifice quality. The strategies we present may be applied to accelerate late-stage process development for other biologics to reduce timelines.


Asunto(s)
COVID-19 , Pandemias , Animales , Células CHO , COVID-19/prevención & control , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Humanos
9.
Data Brief ; 39: 107491, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34712760

RESUMEN

In this article, we present four sets of data from high-throughput screening (HTS) studies of different chemically defined media using an industrially relevant Chinese hamster ovary (CHO) cell line. While complex hydrolysate media was used in the early phase process development and manufacturing of a monoclonal antibody (mAb), here we seek to determine an appropriate chemically defined media for late phase process development. Over 150 combinations of chemically defined basal media, feed media, and basal and feed media supplements, such as polyphenolic flavonoid antioxidants (including rosmarinic acid (RA)), were evaluated in four HTS studies to replace the complex hydrolysate media. Specifically, these four screening studies incorporated custom design of experiment (DOE), one-factor-at-a-time (OFAT), and definitive screening design methodologies for titer improvement. Titer was improved two fold compared to the early phase process using the addition of RA to chemically defined media. This dataset exemplifies how HTS can be used as an effective approach to systematically and statistically determine media composition and supplementation to increase mAb titer. These data were presented in connection with a published paper [1].

10.
Biotechnol Bioeng ; 118(9): 3593-3603, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34185315

RESUMEN

The biopharmaceutical industry is transitioning from currently deployed batch-mode bioprocessing to a highly efficient and agile next-generation bioprocessing with the adaptation of continuous bioprocessing, which reduces capital investment and operational costs. Continuous bioprocessing, aligned with FDA's quality-by-design platform, is designed to develop robust processes to deliver safe and effective drugs. With the deployment of knowledge-based operations, product quality can be built into the process to achieve desired critical quality attributes (CQAs) with reduced variability. To facilitate next-generation continuous bioprocessing, it is essential to embrace a fundamental shift-in-paradigm from "quality-by-testing" to "quality-by-design," which requires the deployment of process analytical technologies (PAT). With the adaptation of PAT, a systematic approach of process and product understanding and timely process control are feasible. Deployment of PAT tools for real-time monitoring of CQAs and feedback control is critical for continuous bioprocessing. Given the current deficiency in PAT tools to support continuous bioprocessing, we have integrated Infinity 2D-LC with a post-flow-splitter in conjunction with the SegFlow autosampler to the bioreactors. With this integrated system, we have established a platform for online measurements of titer and CQAs of monoclonal antibodies as well as amino acid analysis of bioreactor cell culture.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Modelos Teóricos , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/metabolismo
11.
Biotechnol Bioeng ; 118(9): 3334-3347, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33624836

RESUMEN

The goal of cell culture process intensification is to improve productivity while maintaining acceptable quality attributes. In this report, four processes, namely a conventional manufacturing Process A, and processes intensified by enriched N-1 seed (Process B), by perfusion N-1 seed (Process C), and by perfusion production (Process D) were developed for the production of a monoclonal antibody. The three intensified processes substantially improved productivity, however, the product either failed to meet the specification for charge variant species (main peak) for Process D or the production process required early harvest to meet the specification for charge variant species, Day 10 or Day 6 for Processes B and C, respectively. The lower main peak for the intensified processes was due to higher basic species resulting from higher C-terminal lysine. To resolve this product quality issue, we developed an enzyme treatment method by introducing carboxypeptidase B (CpB) to clip the C-terminal lysine, leading to significantly increased main peak and an acceptable and more homogenous product quality for all the intensified processes. Additionally, Processes B and C with CpB treatment extended bioreactor durations to Day 14 increasing titer by 38% and 108%, respectively. This simple yet effective enzyme treatment strategy could be applicable to other processes that have similar product quality issues.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Carboxipeptidasa B/farmacología , Animales , Células CHO , Cricetulus
12.
Data Brief ; 33: 106591, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33318978

RESUMEN

In this article, we provide four data sets for an industrial Chinese Hamster Ovary (CHO) cell line producing antibodies during a 14-day bioreactor run. This cell line was selected for further evaluation because of its significant titer loss as the cells were passaged over time. Four conditions that differed in cell bank ages were run for this dataset. Specifically, cells were passaged to passage 12, 21, 25, and 37 and then used in this experiment. Once the run commenced the following datasets were gathered: 1). Glycosylation data for each reactor 2). Size Exclusion Chromatography (SEC) data for the antibodies produced which allowed for the identification of high and low molecular weight species in the samples (N-Glycan and SEC data was taken on day 14 only). 3/4). Metabolites levels measured using Nuclear Magnetic Resonance (NMR) and liquid chromatography-mass spectroscopy (LC-MS) for all reactors over the time course of days 1, 4, 6, 8, 12, and 14. We also provide a graph of the glutamine levels for cells of different ages as an example of the utility of the data. These metabolomics data provide relative amounts for 36 metabolites (NMR) and 109 metabolites (LC-MS) over the 14-day time course. These data were collected in connection with a co-submitted paper [1].

13.
Biotechnol Bioeng ; 117(10): 3182-3198, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32946122

RESUMEN

Real-time monitoring of bioprocesses by the integration of analytics at critical unit operations is one of the paramount necessities for quality by design manufacturing and real-time release (RTR) of biopharmaceuticals. A well-defined process analytical technology (PAT) roadmap enables the monitoring of critical process parameters and quality attributes at appropriate unit operations to develop an analytical paradigm that is capable of providing real-time data. We believe a comprehensive PAT roadmap should entail not only integration of analytical tools into the bioprocess but also should address automated-data piping, analysis, aggregation, visualization, and smart utility of data for advanced-data analytics such as machine and deep learning for holistic process understanding. In this review, we discuss a broad spectrum of PAT technologies spanning from vibrational spectroscopy, multivariate data analysis, multiattribute chromatography, mass spectrometry, sensors, and automated-sampling technologies. We also provide insights, based on our experience in clinical and commercial manufacturing, into data automation, data visualization, and smart utility of data for advanced-analytics in PAT. This review is catered for a broad audience, including those new to the field to those well versed in applying these technologies. The article is also intended to give some insight into the strategies we have undertaken to implement PAT tools in biologics process development with the vision of realizing RTR testing in biomanufacturing and to meet regulatory expectations.


Asunto(s)
Productos Biológicos , Control de Calidad , Tecnología Farmacéutica
14.
Biotechnol Bioeng ; 117(11): 3400-3412, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32672835

RESUMEN

Significant amounts of soluble product aggregates were observed in the low-pH viral inactivation (VI) operation during an initial scale-up run for an immunoglobulin-G 4 (IgG4) monoclonal antibody (mAb IgG4-N1). Being earlier in development, a scale-down model did not exist, nor was it practical to use costly Protein A eluate (PAE) for testing the VI process at scale, thus, a computational fluid dynamics (CFD)-based high-molecular weight (HMW) prediction model was developed for troubleshooting and risk mitigation. It was previously reported that the IgG4-N1 molecules upon exposure to low pH tend to change into transient and partially unfolded monomers during VI acidification (i.e., VIA) and form aggregates after neutralization (i.e., VIN). Therefore, the CFD model reported here focuses on the VIA step. The model mimics the continuous addition of acid to PAE and tracks acid distribution during VIA. Based on the simulated low-pH zone (≤pH 3.3) profiles and PAE properties, the integrated low-pH zone (ILPZ) value was obtained to predict HMW level at the VI step. The simulations were performed to examine the operating parameters, such as agitation speed, acid addition rate, and protein concentration of PAE, of the pilot scale (50-200 L) runs. The conditions with predictions of no product aggregation risk were recommended to the real scale-up runs, resulted in 100% success rate of the consecutive 12 pilot-scale runs. This study demonstrated that the CFD-based HMW prediction model could be used as a tool to facilitate the scale up of the low-pH VI process directly from bench to pilot/production scale.


Asunto(s)
Reactores Biológicos/virología , Técnicas de Cultivo de Célula/métodos , Simulación por Computador , Inactivación de Virus , Animales , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/metabolismo , Células CHO , Cricetulus , Hidrodinámica , Concentración de Iones de Hidrógeno , Agregado de Proteínas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/normas
15.
MAbs ; 12(1): 1770669, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32425110

RESUMEN

Process intensification has shown great potential to increase productivity and reduce costs in biomanufacturing. This case study describes the evolution of a manufacturing process from a conventional processing scheme at 1000-L scale (Process A, n = 5) to intensified processing schemes at both 1000-L (Process B, n = 8) and 2000-L scales (Process C, n = 3) for the production of a monoclonal antibody by a Chinese hamster ovary cell line. For the upstream part of the process, we implemented an intensified seed culture scheme to enhance cell densities at the seed culture step (N-1) prior to the production bioreactor (N) by using either enriched N-1 seed culture medium for Process B or by operating the N-1 step in perfusion mode for Process C. The increased final cell densities at the N-1 step allowed for much higher inoculation densities in the production bioreactor operated in fed-batch mode and substantially increased titers by 4-fold from Process A to B and 8-fold from Process A to C, while maintaining comparable final product quality. Multiple changes were made to intensify the downstream process to accommodate the increased titers. New high-capacity resins were implemented for the Protein A and anion exchange chromatography (AEX) steps, and the cation exchange chromatography (CEX) step was changed from bind-elute to flow-through mode for the streamlined Process B. Multi-column chromatography was developed for Protein A capture, and an integrated AEX-CEX pool-less polishing steps allowed semi-continuous Process C with increased productivity as well as reductions in resin requirements, buffer consumption, and processing times. A cost-of-goods analysis on consumables showed 6.7-10.1 fold cost reduction from the conventional Process A to the intensified Process C. The hybrid-intensified process described here is easy to implement in manufacturing and lays a good foundation to develop a fully continuous manufacturing with even higher productivity in the future.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Reactores Biológicos/economía , Biotecnología/organización & administración , Animales , Biotecnología/economía , Células CHO , Técnicas de Cultivo de Célula , Proliferación Celular , Costos y Análisis de Costo , Cricetinae , Cricetulus , Eficiencia , Humanos , Invenciones , Modelos Económicos
16.
Biotechnol Prog ; 36(3): e2959, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31930722

RESUMEN

Temperature shifts to lower culture temperatures are frequently employed in the manufacturing of protein therapeutics in mammalian cells to improve productivity, viability, or quality attributes. The direction and extent to which a temperature shift affects productivity and quality may vary depending on the expression host and characteristics of the expressed protein. We demonstrated here that two Chinese hamster ovary (CHO) clones expressing different human monoclonal antibodies responded differently to a temperature shift despite sharing a common parental CHO cell line. Within a single CHO line, we observed a nonlinear response to temperature shift. A moderate shift to 35°C significantly decreased final titer relative to the unshifted control while a larger shift to 32°C significantly increased final titer by 25%. Therefore, we proposed a systematic empirical approach to assess the utility of a temperature shift for faster implementation during process development. By testing multiple shift parameters, we identified optimum shift conditions in shake flasks and successfully translated findings to benchtop bioreactors and 1,000-L bioreactor scale. Significant differences in final antibody titer and charge variants were observed with temperature shift increments as small as Δ1.5°C. Acidic charge variants decreased monotonically with decreasing shift temperature in both cell lines; however, final antibody titer required simultaneous optimization of shift day and temperature. Overall, we were able to show that a systematic approach to identify temperature shift parameters at small scales is useful to optimize protein production and quality for efficient and confident translation to large-scale production.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Reactores Biológicos , Células CHO , Técnicas de Cultivo de Célula/tendencias , Animales , Anticuerpos Monoclonales/genética , Cricetinae , Cricetulus , Humanos , Temperatura
17.
MAbs ; 11(8): 1502-1514, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379298

RESUMEN

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2-10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22-34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3-6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Animales , Células CHO , Cricetulus , Humanos
18.
MAbs ; 11(1): 191-204, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30230966

RESUMEN

Temperature shift (TS) to a hypothermic condition has been widely used during protein production processes that use Chinese hamster ovary (CHO) cells. The effect of temperature on cell growth, metabolites, protein titer and quality depends on cell line, product, and other bioreactor conditions. Due to the large numbers of experiments, which typically last 2-3 weeks each, limited systematic TS studies have been reported with multiple shift temperatures and steps at different times. Here, we systematically studied the effect of temperature on cell culture performance for the production of two monoclonal antibodies by industrial GS and DG44 CHO cell lines. Three 2-8 day short-duration methods were developed and validated for researching the effect of many different temperatures on CHO cell culture and quality attributes. We found that minor temperature differences (1-1.5 °C) affected cell culture performance. The kinetic parameters extracted from the short duration data were subsequently used to compute and predict cell culture performance in extended duration of 10-14 days with multiple TS conditions for both CHO cell lines. These short-duration culture methods with kinetic modeling tools may be used for effective TS optimization to achieve the best profiles for cell growth, metabolites, titer and quality attributes. Although only three short-duration methods were developed with two CHO cell lines, similar short-duration methods with kinetic modeling may be applied for different hosts, including both microbial and other mammalian cells.


Asunto(s)
Anticuerpos Monoclonales , Células CHO , Técnicas de Cultivo de Célula/métodos , Animales , Reactores Biológicos/normas , Proliferación Celular , Cricetinae , Cricetulus , Cinética , Temperatura
19.
Biotechnol Bioeng ; 115(9): 2377-2382, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29777592

RESUMEN

This study reports findings of an unusual cluster of mutations spanning 22 bp (base pairs) in a monoclonal antibody expression vector. It was identified by two orthogonal methods: mass spectrometry on expressed protein and next-generation sequencing (NGS) on the plasmid DNA. While the initial NGS analysis confirmed the designed sequence modification, intact mass analysis detected an additional mass of the antibody molecule expressed in CHO cells. The extra mass was eventually found to be associated with unmatched nucleotides in a distal region by checking full-length sequence alignment plots. Interestingly, the complementary sequence of the mutated sequence was a reverse sequence of the original sequence and flanked by two 10-bp reverse-complementary sequences, leading to an undesirable DNA recombination. The finding highlights the necessity of rigorous examination of expression vector design and early monitoring of molecule integrity at both DNA and protein levels to prevent clones from having sequence variants during cell line development.


Asunto(s)
Anticuerpos/metabolismo , Vectores Genéticos , Factores Inmunológicos/metabolismo , Mutación , Proteínas Recombinantes/metabolismo , Animales , Anticuerpos/química , Anticuerpos/genética , Células CHO , Cricetulus , Secuenciación de Nucleótidos de Alto Rendimiento , Factores Inmunológicos/química , Factores Inmunológicos/genética , Espectrometría de Masas , Plásmidos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Recombinación Genética
20.
Biotechnol Bioeng ; 115(4): 1051-1061, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29251349

RESUMEN

Suspension cultivation is the preferred mode of operation for the large-scale production of many biologics. Chinese Hamster Ovary (CHO) cells are anchorage-dependent in origin, but they have been widely adapted to suspension culture. In suspension culture, formation of CHO cell aggregates is a common phenomenon and compromises cell culture performance in multiple ways. To better understand the underlying mechanisms that regulate cell aggregation, we utilized CHO-specific transcriptome profiling as a screening tool and demonstrated that many genes encoding extracellular matrix (ECM) proteins were upregulated in the cultures with increased cell aggregation. Significantly, hypoxia was identified to be a cause for promoting CHO cell aggregation, and transforming growth factor beta1 (TGFß1) pathway activation served as an intermediate step mediating this biological cascade. These transcriptomics findings were confirmed by cell culture experiments, and it was further demonstrated that adding recombinant TGFß1 to the culture significantly increased ECM protein fibronectin expression and cell aggregation. The results of this study emphasize the importance of adequate mixing and oxygen supply for suspension cultures from a new angle, and regulating the TGFß1 pathway is proposed as a new strategy for mitigating cell aggregation to improve cell culture performance.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Agregación Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Animales , Células CHO , Cricetulus , Fibronectinas/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Oxígeno/farmacología , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...