Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
ACS Pharmacol Transl Sci ; 4(4): 1390-1407, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34423273

RESUMEN

Activation-induced cytidine deaminase (AID) initiates antibody diversification by mutating immunoglobulin loci in B lymphocytes. AID and related APOBEC3 (A3) enzymes also induce genome-wide mutations and lesions implicated in tumorigenesis and tumor progression. The most prevalent mutation signatures across diverse tumor genomes are attributable to the mistargeted mutagenic activities of AID/A3s. Thus, inhibiting AID/A3s has been suggested to be of therapeutic benefit. We previously used a computational-biochemical approach to gain insight into the structure of AID's catalytic pocket, which resulted in the discovery of a novel type of regulatory catalytic pocket closure that regulates AID/A3s that we termed the "Schrodinger's CATalytic pocket". Our findings were subsequently confirmed by direct structural studies. Here, we describe our search for small molecules that target the catalytic pocket of AID. We identified small molecules that inhibit purified AID, AID in cell extracts, and endogenous AID of lymphoma cells. Analogue expansion yielded derivatives with improved potencies. These were found to also inhibit A3A and A3B, the two most tumorigenic siblings of AID. Two compounds exhibit low micromolar IC50 inhibition of AID and A3A, exhibiting the strongest potency for A3A. Docking suggests key interactions between their warheads and residues lining the catalytic pockets of AID, A3A, and A3B and between the tails and DNA-interacting residues on the surface proximal to the catalytic pocket opening. Accordingly, mutants of these residues decreased inhibition potency. The chemistry and abundance of key stabilizing interactions between the small molecules and residues within and immediately outside the catalytic pockets are promising for therapeutic development.

3.
N Biotechnol ; 51: 67-79, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30822538

RESUMEN

AID/APOBEC3 enzymes are cytidine deaminases that mutate antibody and retroviral genes and also mediate extensive tumor genome mutagenesis. The study of purified AID/APOBEC3 proteins is challenged by difficulties with their expression and purification arising from genotoxicity in expression hosts, extensive non-specific protein-protein/DNA/RNA interactions and haphazard oligomerization. To date, expression hosts for purification of AID/APOBEC3 enzymes include bacteria, insect and mammalian cells. Here the establishment and optimization of a yeast expression/secretion system for AID/APOBEC3s are reported, followed by comparison with the same enzymes expressed in bacterial and mammalian hosts. AID and APOBEC3G were expressed successfully in Pichia pastoris, each either with an N-terminal GST tag, C-terminal V5-His tag or as untagged native form. It was verified that the yeast-expressed enzymes exhibit identical biochemical properties to those reported using bacterial and mammalian expression, indicating high fidelity of protein folding. It was demonstrated that the system can be adapted for secretion of the enzymes into the media which was used directly in various enzyme assays. The system is also amenable to elimination of bulky fusion tags, providing native untagged enzymes. Thus, P. pastoris is an advantageous expression factory for AID/APOBEC3 enzymes, considering the cost, time, efficiency and quality of the obtained enzymes. The first report is also provided here of a functionally active, untagged, secreted AID, which may become a useful research reagent. A comprehensive comparison is made of the effect of fusion tags and expression hosts on the biochemical actions of AID and APOBEC3G.


Asunto(s)
Desaminasas APOBEC/biosíntesis , Desaminasas APOBEC/genética , Citidina Desaminasa/biosíntesis , Citidina Desaminasa/genética , Inmunidad , Neoplasias/enzimología , Pichia/genética , Desaminasas APOBEC/aislamiento & purificación , Citidina Desaminasa/aislamiento & purificación , Humanos , Mutágenos , Neoplasias/metabolismo
4.
Int Rev Immunol ; 37(3): 151-164, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29211501

RESUMEN

APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.


Asunto(s)
Carcinogénesis/genética , Infecciones por VIH/genética , VIH/inmunología , Inmunoterapia/métodos , Desaminasas APOBEC , Inmunidad Adaptativa , Animales , Antivirales , Evolución Biológica , Citidina Desaminasa , Citosina Desaminasa , Reparación del ADN , VIH/genética , Infecciones por VIH/inmunología , Humanos , Evasión Inmune/genética , Inmunidad Innata , Mutación/genética
5.
Front Immunol ; 9: 3032, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687306

RESUMEN

APOBEC3G (A3G) is a host enzyme that mutates the genomes of retroviruses like HIV. Since A3G is expressed pre-infection, it has classically been considered an agent of innate immunity. We and others previously showed that the impact of A3G-induced mutations on the HIV genome extends to adaptive immunity also, by generating cytotoxic T cell (CTL) escape mutations. Accordingly, HIV genomic sequences encoding CTL epitopes often contain A3G-mutable "hotspot" sequence motifs, presumably to channel A3G action toward CTL escape. Here, we studied the depths and consequences of this apparent viral genome co-evolution with A3G. We identified all potential CTL epitopes in Gag, Pol, Env, and Nef restricted to several HLA class I alleles. We simulated A3G-induced mutations within CTL epitope-encoding sequences, and flanking regions. From the immune recognition perspective, we analyzed how A3G-driven mutations are predicted to impact CTL-epitope generation through modulating proteasomal processing and HLA class I binding. We found that A3G mutations were most often predicted to result in diminishing/abolishing HLA-binding affinity of peptide epitopes. From the viral genome evolution perspective, we evaluated enrichment of A3G hotspots at sequences encoding CTL epitopes and included control sequences in which the HIV genome was randomly shuffled. We found that sequences encoding immunogenic epitopes exhibited a selective enrichment of A3G hotspots, which were strongly biased to translate to non-synonymous amino acid substitutions. When superimposed on the known mutational gradient across the entire length of the HIV genome, we observed a gradient of A3G hotspot enrichment, and an HLA-specific pattern of the potential of A3G hotspots to lead to CTL escape mutations. These data illuminate the depths and extent of the co-evolution of the viral genome to subvert the host mutator A3G.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Inmunidad Adaptativa/genética , Infecciones por VIH/inmunología , VIH-1/genética , Interacciones Huésped-Patógeno/genética , Evasión Inmune/genética , Coevolución Biológica/genética , Coevolución Biológica/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Genoma Viral/genética , Genoma Viral/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno/inmunología , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Humanos , Mutación , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
6.
Iran J Microbiol ; 5(2): 153-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23825734

RESUMEN

BACKGROUND AND OBJECTIVES: Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsulfatase is an enzyme that hydrolyses sulfate -ester bonds to give inorganic sulfate and alcohol. The purpose of this study was to isolate SDS-degrading bacteria from Tehran city car wash wastewater, study bacterial alkylsulfatase enzyme activity and identify the alkylsulfatase enzyme coding gene. MATERIALS AND METHODS: Screening of SDS-degrading bacteria was carried out on basal salt medium containing SDS as the sole source of carbon. Amount of SDS degraded was assayed by methylene blue active substance (MBAS). RESULTS AND CONCLUSION: Identification of the sdsA gene was carried by PCR and subsequent sequencing of the 16S rDNA gene and biochemical tests identified Pseudomonas aeruginosa. This bacterium is able to degrade 84% of SDS after four days incubation. Bacteria isolated from car wash wastewater were shown to carry the sdsA gene (670bp) and the alkylsulfatase enzyme specific activity expressed from this gene was determined to be 24.3 unit/mg. The results presented in this research indicate that Pseudomonas aeruginosa is a suitable candidate for SDS biodegradation.

7.
J Environ Radioact ; 113: 171-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22809716

RESUMEN

A new isolate, Kocuria sp. ASB 107 from the Ab-e-Siah mineral radioactive spring (Ramsar, Mazandaran Province, Iran) was characterized on the basis of morphological and biochemical characteristics plus 16S rRNA gene sequencing. The isolate is most closely related to Kocuria rosea DSM 20447(T) (99.7% sequence similarity) and Kocuria polaris DSM 14382(T) (99.5%). This strain has some resistance to various genotoxic stresses, such as ionizing radiation, ultraviolet (256 nm- UV) and corona discharge. The 90% lethal doses (D(10)) for gamma-rays and 256 nm-UV are 2 kGy and 400 J m(-2), respectively, in definite cell concentration. Moreover, the resistance for a definite energy of corona discharge is 10 s, about 10 times greater than that of Escherichia coli. The growth temperature of the strain ASB 107 is 0-37 °C in TSB (tryptic soy broth). This study is the first report on the psychrotrophic radio-resistant bacteria belonging to the Kocuria genus isolated from Ab-e-Siah spring.


Asunto(s)
Micrococcaceae/efectos de la radiación , Radiación Ionizante , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA