Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Image Anal ; 90: 102893, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741032

RESUMEN

A tractogram is a virtual representation of the brain white matter. It is composed of millions of virtual fibers, encoded as 3D polylines, which approximate the white matter axonal pathways. To date, tractograms are the most accurate white matter representation and thus are used for tasks like presurgical planning and investigations of neuroplasticity, brain disorders, or brain networks. However, it is a well-known issue that a large portion of tractogram fibers is not anatomically plausible and can be considered artifacts of the tracking procedure. With Verifyber, we tackle the problem of filtering out such non-plausible fibers using a novel fully-supervised learning approach. Differently from other approaches based on signal reconstruction and/or brain topology regularization, we guide our method with the existing anatomical knowledge of the white matter. Using tractograms annotated according to anatomical principles, we train our model, Verifyber, to classify fibers as either anatomically plausible or non-plausible. The proposed Verifyber model is an original Geometric Deep Learning method that can deal with variable size fibers, while being invariant to fiber orientation. Our model considers each fiber as a graph of points, and by learning features of the edges between consecutive points via the proposed sequence Edge Convolution, it can capture the underlying anatomical properties. The output filtering results highly accurate and robust across an extensive set of experiments, and fast; with a 12GB GPU, filtering a tractogram of 1M fibers requires less than a minute.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 3979-3985, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35576421

RESUMEN

An effective 3D descriptor should be invariant to different geometric transformations, such as scale and rotation, robust to occlusions and clutter, and capable of generalising to different application domains. We present a simple yet effective method to learn general and distinctive 3D local descriptors that can be used to register point clouds that are captured in different domains. Point cloud patches are extracted, canonicalised with respect to their local reference frame, and encoded into scale and rotation-invariant compact descriptors by a deep neural network that is invariant to permutations of the input points. This design is what enables our descriptors to generalise across domains. We evaluate and compare our descriptors with alternative handcrafted and deep learning-based descriptors on several indoor and outdoor datasets that are reconstructed by using both RGBD sensors and laser scanners. Our descriptors outperform most recent descriptors by a large margin in terms of generalisation, and also become the state of the art in benchmarks where training and testing are performed in the same domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...