Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biol Open ; 13(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38345430

RESUMEN

Automated image quantification workflows have dramatically improved over the past decade, enriching image analysis and enhancing the ability to achieve statistical power. These analyses have proved especially useful for studies in organisms such as Drosophila melanogaster, where it is relatively simple to obtain high sample numbers for downstream analyses. However, the developing wing, an intensively utilized structure in developmental biology, has eluded efficient cell counting workflows due to its highly dense cellular population. Here, we present efficient automated cell counting workflows capable of quantifying cells in the developing wing. Our workflows can count the total number of cells or count cells in clones labeled with a fluorescent nuclear marker in imaginal discs. Moreover, by training a machine-learning algorithm we have developed a workflow capable of segmenting and counting twin-spot labeled nuclei, a challenging problem requiring distinguishing heterozygous and homozygous cells in a background of regionally varying intensity. Our workflows could potentially be applied to any tissue with high cellular density, as they are structure-agnostic, and only require a nuclear label to segment and count cells.


Asunto(s)
Drosophila , Discos Imaginales , Animales , Drosophila melanogaster , Larva , Núcleo Celular
2.
Microsc Res Tech ; 87(5): 1122-1127, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38259083

RESUMEN

A protocol for the analysis of a binary system comprising polyacrylamide hydrogel-attached sperm cells using high-vacuum scanning electron microscopy (SEM) is presented. This protocol focuses on optimizing the SEM procedure to obtain accurate and detailed imaging of the sperm cells and their interactions with the hydrogel scaffold. The methodology involves a stepwise sample preparation, including sample dehydration through a gradual exchange of ethanol/water ratios, followed by the application of a conductive metal coating. By employing this modified protocol, the traditional use of acetone dehydration, which may introduce chemical alterations to the materials, is avoided. The proposed approach enables a comprehensive evaluation of the morphology and interactions within the biological system in contact with the soft material scaffold. Furthermore, the potential application of this protocol extends to the study of other mammalian reproductive cells or cells of different origins adhered to hydrogel scaffolds. RESEARCH HIGHLIGHTS: Novel SEM protocol reveals precise imaging of sperm-hydrogel attachment in a binary system, enhancing our understanding of cell-material interactions. By optimizing SEM procedures, the protocol achieves precise imaging of sperm-hydrogel interactions using ethanol/water dehydration and a conductive metal coating. This modified approach enables a thorough assessment of morphology and interactions in the binary system,extending its potential applicability to other reproductive cells on hydrogelscaffolds.


Asunto(s)
Resinas Acrílicas , Deshidratación , Semen , Animales , Masculino , Microscopía Electrónica de Rastreo , Vacio , Hidrogeles , Espermatozoides , Etanol , Agua , Mamíferos
3.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37790459

RESUMEN

The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. "Would-be" winners that lack Fmi are unable to over-proliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.

4.
EMBO Rep ; 24(12): e56997, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37975164

RESUMEN

Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of protein phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one serine/threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.


Asunto(s)
Proteínas de Drosophila , Proteínas de la Membrana , Animales , Polaridad Celular/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
5.
Colloids Surf B Biointerfaces ; 231: 113575, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832175

RESUMEN

Novel soft materials based on hydrogel are proposed to enhance the selection of high-quality stallion sperm based on their adhesion capacity. The hydrogel surfaces are derived from polyacrylamide (PAAm), which is copolymerized with neutral and ionic co-monomers to modify the interfacial properties. The hydrogels undergo characterization through FTIR spectroscopy, assessment of swelling capacity, and wettability under various experimental conditions. Sperm adhesion capacity on the hydrogels is examined through several parameters including the percentage of bound sperm (%Sp) to hydrogels, tail oscillation intensity and flagellar movement. The biointerfacial properties of sperm-hydrogel systems vary based on the chemical composition of hydrogel as well as the components present in the culture medium. High %Sp and excellent metabolic activity of the spermatozoa are observed on hydrogel surfaces that possess moderate hydrophilicity. Specifically, a cationic hydrogel in BGM3 culture medium and a neutral surface in BGM3 medium supplemented with BSA exhibit favorable outcomes. Scanning Electron Microscopy (SEM) reveals the normal morphology of the head and tail in spermatozoa adhered to the hydrogel. Therefore, these hydrogel surfaces are potential materials for selecting stallion sperm with high quality, and their application could be extended to the study of other mammalian reproductive cells.


Asunto(s)
Hidrogeles , Semen , Masculino , Caballos , Animales , Hidrogeles/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo , Humectabilidad , Mamíferos
6.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745534

RESUMEN

PCP signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of Protein Phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one Serine/Threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.

7.
Environ Dev Sustain ; : 1-21, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37362989

RESUMEN

The Canary Islands are one of the main destinations for mass tourism in the European context, characterized by the absence of seasonality in tourist activity. Moreover, the level of activity increases during the winters, coinciding with a greater probability of extreme rainfall events, whose danger seems to be increasing as a result of climate change. Owing to its pronounced orography, the southern coast of the island of Gran Canaria houses several tourist settlements built along ravines and steeply sloping terrain. This scenario presents considerable risk because of spatial probability of landslide occurrence. The case of San Agustín, especially, serves to test the model of tourist urbanization along the hillside, demonstrating its high fragility in the face of extreme rainfall events. Especially owing to its importance in providing assistance in emergency situations, its vulnerability has been analyzed with regard to accessibility, which is entirely dependent on road mobility. The growth model of San Agustín serves as an example of mass tourism in small islands, allowing urban planners and designers to assess corrective measures based on managing its existing road infrastructure and open spaces right from the planning stage.

8.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292877

RESUMEN

Automated image quantification workflows have dramatically improved over the past decade, enriching image analysis and enhancing the ability to achieve statistical power. These analyses have proved especially useful for studies in organisms such as Drosophila melanogaster, where it is relatively simple to obtain high sample numbers for downstream analyses. However, the developing wing, an intensively utilized structure in developmental biology, has eluded efficient cell counting workflows due to its highly dense cellular population. Here, we present efficient automated cell counting workflows capable of quantifying cells in the developing wing. Our workflows can count the total number of cells or count cells in clones labeled with a fluorescent nuclear marker in imaginal discs. Moreover, by training a machine-learning algorithm we have developed a workflow capable of segmenting and counting twin-spot labeled nuclei, a challenging problem requiring distinguishing heterozygous and homozygous cells in a background of regionally varying intensity. Our workflows could potentially be applied to any tissue with high cellular density, as they are structure-agnostic, and only require a nuclear label to segment and count cells.

9.
Methods Mol Biol ; 2540: 239-249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35980581

RESUMEN

Anchor away is a sequestering method designed to acutely and timely abrogate the function of a protein of interest by anchoring to a cell compartment different from its target. This method induces the binding of the target protein to the anchor by either the addition of rapamycin to Drosophila food or cell media. Rapamycin mediates the formation of a ternary complex between the anchor, which is tagged with the FK506-binding protein (FKBP12), and the target protein fused with the FKB12 rapamycin-binding (FRB) domain of mammalian target of rapamycin (mTOR). The rapamycin-bound target protein stays sequestered away from its compartment, where it cannot perform its biological function.


Asunto(s)
Drosophila , Sirolimus , Animales , Drosophila/metabolismo , Mamíferos/metabolismo , Sirolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus
10.
J Am Heart Assoc ; 11(16): e024168, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35929465

RESUMEN

Background With the increase of highly portable, wireless, and low-cost ultrasound devices and automatic ultrasound acquisition techniques, an automated interpretation method requiring only a limited set of views as input could make preliminary cardiovascular disease diagnoses more accessible. In this study, we developed a deep learning method for automated detection of impaired left ventricular (LV) function and aortic valve (AV) regurgitation from apical 4-chamber ultrasound cineloops and investigated which anatomical structures or temporal frames provided the most relevant information for the deep learning model to enable disease classification. Methods and Results Apical 4-chamber ultrasounds were extracted from 3554 echocardiograms of patients with impaired LV function (n=928), AV regurgitation (n=738), or no significant abnormalities (n=1888). Two convolutional neural networks were trained separately to classify the respective disease cases against normal cases. The overall classification accuracy of the impaired LV function detection model was 86%, and that of the AV regurgitation detection model was 83%. Feature importance analyses demonstrated that the LV myocardium and mitral valve were important for detecting impaired LV function, whereas the tip of the mitral valve anterior leaflet, during opening, was considered important for detecting AV regurgitation. Conclusions The proposed method demonstrated the feasibility of a 3-dimensional convolutional neural network approach in detection of impaired LV function and AV regurgitation using apical 4-chamber ultrasound cineloops. The current study shows that deep learning methods can exploit large training data to detect diseases in a different way than conventionally agreed on methods, and potentially reveal unforeseen diagnostic image features.


Asunto(s)
Insuficiencia de la Válvula Aórtica , Enfermedades Cardiovasculares , Aprendizaje Profundo , Insuficiencia de la Válvula Mitral , Enfermedades Cardiovasculares/diagnóstico por imagen , Humanos , Válvula Mitral , Función Ventricular Izquierda
11.
Reprod Domest Anim ; 57(2): 228-232, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33908090

RESUMEN

We report the development of a hydrogel-based approach to select bull spermatozoa, a crucial step for successful assisted reproductive techniques (ARTs). Hyaluronic acid (HA) semi-interpenetrated N-isopropylacrylamide (PNIPAM) co-20% N-Tris (hydroxymethyl) methyl acrylamide (HMA) hydrogels were synthetized on glass surfaces and cultured in presence of frozen-thawed bull spermatozoa. A fraction of motile bull spermatozoa population strongly attached to hydrogels and was partially released by treatment with hyaluronidase. Fifty-nine (59 ± 7.24) per cent of sperm cells attached to PNIPAM-HMA-HA hydrogels and 31.16 ± 4.81% of them were released upon treatment with medium containing hyaluronidase. This attached-released sperm fraction has acceptable characteristics of progressive motility (50.0 ± 5.0%), vigour (4), high viability (58.7 ± 11.7%) and low percentage of acrosome reacted spermatozoa (23.36 ± 4.1%). Our findings indicate that PNIPAM-HMA-HA hydrogels are non-toxic and allow the selection of high-quality sperm cells for ART.


Asunto(s)
Preservación de Semen , Motilidad Espermática , Acrosoma , Animales , Bovinos , Criopreservación/veterinaria , Ácido Hialurónico , Hidrogeles , Masculino , Preservación de Semen/veterinaria , Espermatozoides
12.
Heliyon ; 7(3): e06436, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33763610

RESUMEN

Langmuir and Langmuir-Blodgett films holding a synthetic bioinspired wound healing active compound were used as drug-delivery platforms. Palmitic acid Langmuir monolayers were able to incorporate 2-methyltriclisine, a synthetic Triclisine derivative that showed wound healing activity. The layers proved to be stable and the nanocomposites were transferred to solid substrates. Normal human lung cells (Medical Research Council cell strain 5, MRC-5) were grown over the monomolecular Langmuir-Blodgett films that acted as a drug reservoir and delivery system. The proliferation and migration of the cells were clearly affected by the presence of 2-methyltriclisine in the amphiphilic layers. The methodology is proposed as a simple and reliable model for the study of the effects of bioactive compounds over cellular cultures.

13.
G3 (Bethesda) ; 10(5): 1745-1752, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32217630

RESUMEN

Several techniques have been developed to study specific gene function in loss-of-function situations. In Drosophila melanogaster, RNAi and the generation of mutant clones are widely used. However, both techniques have the limitation that there is a significant time lag before gene function is abolished. Given the relatively rapid development of Drosophila, such perdurance is a serious impediment to study gene function. Here we describe the adaptation of the anchor-away technique for use in Drosophila Anchor-away was originally developed in yeast to quickly and efficiently abrogate the function of nuclear proteins by sequestering - anchoring - them away in a different cellular compartment. The required components are present in the cells, and the system is triggered by the addition of rapamycin, resulting in a rapid generation of a loss-of-function situation. We provide here proof of principle for the system by producing loss-of-function situations for two nuclear proteins - Pygopus and Brinker. The system allows to study the requirement of any protein during any time window, and at the same time circumvents difficulties, such as off-target effects or variable phenotypes, which are inherent in other techniques, for example RNAi.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fenotipo , Interferencia de ARN
14.
RSC Adv ; 10(10): 5827-5837, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35497440

RESUMEN

Some of the essential properties for cellular scaffolding are the capability to maintain the three-dimensional (3D) structure, good adhesion, and adequate elastic modulus during cell growth, migration, and proliferation. Biocompatible synthetic hydrogels are commonly used as cellular scaffolds because they can mimic the natural extracellular matrices (ECMs). However, it is possible that the physicochemical and mechanical behavior of the scaffold changes during cell proliferation and loses the scaffold properties but this is rarely monitored. In this work, the physicochemical and mechanical properties of a macroporous soft material based on poly(N-isopropyl acrylamide) (PNIPAM) have been studied during a period of 75 days at culture condition while bovine fetal fibroblasts (BFF) were grown within the matrix. The interconnected macroporous hydrogel was obtained by cryogelation at -18 °C. The swelling capacity of the scaffold was not altered during cell proliferation but changes in the mechanical properties were observed, beginning with the high elastic modulus (280 kPa) that progressively decreased until mechanical stability (40 kPa) was achieved after 20 culture days. It was observed that the matrix-cell interactions together with collagen production favor normal cellular processes such as cell morphology, adhesion, migration, and proliferation. Therefore, the observed behavior of macroporous PNIPAM as a 3D scaffold during cell growth indicates that the soft matrix is cytocompatible for a long time and preserves the suitable properties that can be applied in tissue engineering and regenerative medicine.

15.
Dev Cell ; 51(6): 787-803.e5, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31735669

RESUMEN

The use of adult Drosophila melanogaster as a model for hematopoiesis or organismal immunity has been debated. Addressing this question, we identify an extensive reservoir of blood cells (hemocytes) at the respiratory epithelia (tracheal air sacs) of the thorax and head. Lineage tracing and functional analyses demonstrate that the majority of adult hemocytes are phagocytic macrophages (plasmatocytes) from the embryonic lineage that parallels vertebrate tissue macrophages. Surprisingly, we find no sign of adult hemocyte expansion. Instead, hemocytes play a role in relaying an innate immune response to the blood cell reservoir: through Imd signaling and the Jak/Stat pathway ligand Upd3, hemocytes act as sentinels of bacterial infection, inducing expression of the antimicrobial peptide Drosocin in respiratory epithelia and colocalizing fat body domains. Drosocin expression in turn promotes animal survival after infection. Our work identifies a multi-signal relay of organismal humoral immunity, establishing adult Drosophila as model for inter-organ immunity.


Asunto(s)
Células Sanguíneas/metabolismo , Hematopoyesis/fisiología , Macrófagos/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Drosophila/metabolismo , Hemocitos/metabolismo , Inmunidad Celular/inmunología , Inmunidad Innata/inmunología , Quinasas Janus/metabolismo , Factores de Transcripción/metabolismo
16.
Heliyon ; 5(4): e01528, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31049437

RESUMEN

Poly(amidoamine) and Poly(propylenimine) dendrimers with different generations and peripheral groups were studied as solubility enhancers and nanocarriers for 7-bromo-2-hydroxy-phenazine N 5,N 10-dioxide. This compound possesses potential antitumoral and anti-trypanosomal activity, but its low solubility in physiological media precludes its possible application as therapeutic drug. The amino terminated dendrimers association with the active compounds as observed trough NMR studies showed that electrostatic interactions are essential in the solubilization enhancement process. The obtaining of a stable and no cytotoxic formulation makes the drug-carried association a suitable strategy for the generation of a drug delivery system for phenazine derivatives.

17.
Heliyon ; 5(4): e01474, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31008402

RESUMEN

Several hydrogel surfaces present properties that simulate the mechanical and physicochemical features of extracellular matrix (ECM), providing a platform that mimic the native cellular milieus. Poly-N-isopropylacrylamide (PNIPAM) hydrogels are receiving attention in biomedical field due to their thermosensibility and soft texture. However, more extensive biocompatibility and cellular interactions studies with cell lines are needed. Therefore, the aim of this study is focus on evaluating the biocompatibility of PNIPAM through cytotoxicity, genotoxicity, and proliferation tests in murine preadipose cells (3T3-L1), human embryonic kidney cells (HEK293) and human carcinoma-derived cells (A549) in presence of hydrogel surfaces. Bioadhesive capacity above PNIPAM surfaces was also analyzed. MTT and neutral red uptake assays shown non-cytotoxic effect of PNIPAM in the studied cell lines. Genotoxicity was evaluated by the single-cell gel electrophoresis assay, where DNA damages were not detected. [3H]-thymidine staining allowed to corroborate that cell proliferation had progressed correctly. Adopted morphologies for each cell line over PNIPAM were similar to cell growing observed on polystyrene, indicating that the surfaces favor the cell attachment during 5 days' culture. The good biocompatibility of PNIPAM surfaces make it an interesting scaffold with clinical potential in tissue regeneration engineering, and a possible adipose and kidney tissue-engineered construct.

18.
Colloids Surf B Biointerfaces ; 158: 488-497, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28735221

RESUMEN

Cationic, anionic and non-ionic hydrogels having acrylamide polymer backbones were synthesized via free radical polymerization with N,N-methylenebisacrylamide (BIS) as crosslinker. The chemical structures of the hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR). Physicochemical properties such as swelling kinetic, maximum swelling capacity, volume phase transition temperature (VPTT) and wettability (static water contact angle) of hydrogels swollen in aqueous and cell culture medium, at room and cell culture temperatures were studied. In order to correlate the surface properties of the hydrogels and cellular adhesivity of bovine fetal fibroblasts (BFFs), cellular behaviour was analyzed by inverted fluorescence optical microscopy and atomic force microscopy (AFM). MTT assay demonstrated that the number of viable cells in contact with hydrogels does not significantly change in comparison to a control surface. Flattened and spindle-shaped cells and cell spheroids were the adopted morphologies during first days of culture on different hydrogels. Cell spheroids were easily obtained during the first 5days of culture in contact with PNIPAM-co-20%HMA (poly (N-isopropylacrylamide-co-20%N-acryloyl-tris-(hydroxymethyl)aminomethane)) hydrogel surface. After 15days of culture all hydrogels showed high adhesion and visual proliferation. According to obtained results, non-ionic and hydrophilic surfaces with moderated wettability induce the formation of BFFs cell spheroids. These hydrogel surfaces could be used in clinical and biochemical treatments at laboratory level to cell growth and will allow generating the base for future biotechnologic platform.


Asunto(s)
Fibroblastos/citología , Hidrogeles/química , Animales , Materiales Biocompatibles/química , Bovinos , Microscopía de Fuerza Atómica , Propiedades de Superficie , Agua/química , Humectabilidad
19.
Elife ; 62017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28675374

RESUMEN

Dpp, a member of the BMP family, is a morphogen that specifies positional information in Drosophila wing precursors. In this tissue, Dpp expressed along the anterior-posterior boundary forms a concentration gradient that controls the expression domains of target genes, which in turn specify the position of wing veins. Dpp also promotes growth in this tissue. The relationship between the spatio-temporal profile of Dpp signalling and growth has been the subject of debate, which has intensified recently with the suggestion that the stripe of Dpp is dispensable for growth. With two independent conditional alleles of dpp, we find that the stripe of Dpp is essential for wing growth. We then show that this requirement, but not patterning, can be fulfilled by uniform, low level, Dpp expression. Thus, the stripe of Dpp ensures that signalling remains above a pro-growth threshold, while at the same time generating a gradient that patterns cell fates.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Alas de Animales/embriología , Animales , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Análisis Espacio-Temporal
20.
J Colloid Interface Sci ; 496: 243-253, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28235718

RESUMEN

Organic macromolecules with dendrimeric architectures are polymeric materials potentially useful as nanocarriers for therapeutic drugs. In this work, we evaluate a series of Newkome-type dendrons in Langmuir and Langmuir-Blodgett films as platforms capable of interacting with a potential antitumoral agent. The nanocomposite is proposed as model for the development of surface mediated drug delivery systems. We were successful in the formation and characterization of pure (dendrons) and composite (drug-dendron) stable and reproducible monolayers, and their transfer to solid substrates. A detailed study of topographic characteristics of the generated surfaces by atomic force microscopy was conducted. Furthermore, we probed dendron monolayer films as anchorage surfaces for mammalian cells. Normal cell attachment and proliferation on the surfaces were observed. No evident cytotoxic effects were detected, demonstrating the adequate biocompatibility of the surfaces.


Asunto(s)
Dendrímeros/química , Portadores de Fármacos/química , Nanoestructuras/química , Albendazol/química , Albendazol/toxicidad , Compuestos de Anilina/química , Animales , Antineoplásicos/química , Antineoplásicos/toxicidad , Materiales Biocompatibles/química , Adhesión Celular , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Microscopía de Fuerza Atómica , Células 3T3 NIH , Nitrobencenos/química , Relación Estructura-Actividad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...