Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(24): e2312899, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38457527

RESUMEN

The deterministic preparation of highly ordered single-crystalline surfaces is a key step for studying and utilizing the physical properties of various advanced materials. This paper presents the fast and straightforward preparation of vicinal Al2O3(0001) surfaces with micrometer-scale atomic order. Crisp electron-diffraction spots up to at least 20th order evidence atomic coherence on terraces with widths exceeding 1 µm. The unique combination of three properties of Al2O3(0001) underlie this remarkable coherence: its high-temperature stability; the differences in the ionic bonding systems of the surface as compared to the bulk; and the fact that the terraces are non-polar whereas the step edges have a polar character. The step edges are furthermore found to have alternating configurations, which drive a step-doubling transition. On double-stepped surfaces, the Al-rich ( 31 × 31 ) R ± 9 $(\sqrt {31}\times \sqrt {31})\textrm {R}\pm 9$ ° surface reconstruction attains a singular in-plane orientation. These results set a benchmark for high-quality surface preparation and thus expand the scope for both fundamental studies on and the technological utilization of exciting material systems.

2.
ACS Nano ; 14(10): 12697-12707, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32910642

RESUMEN

The last three decades have seen a growing trend toward studying the interfacial phenomena in complex oxide heterostructures. Of particular concern is the charge distribution at interfaces, which is a crucial factor in controlling the interface transport behavior. However, the study of the charge distribution is very challenging due to its small length scale and the intricate structure and chemistry at interfaces. Furthermore, the underlying origin of the interfacial charge distribution has been rarely studied in-depth and is still poorly understood. Here, by a combination of aberration-corrected scanning transmission electron microscopy (STEM) and spectroscopy techniques, we identify the charge accumulation in the SrMnO3 (SMO) side of SrMnO3/SrTiO3 heterointerfaces and find that the charge density attains the maximum of 0.13 ± 0.07 e-/unit cell (uc) at the first SMO monolayer. Based on quantitative atomic-scale STEM analyses and first-principle calculations, we explore the origin of interfacial charge accumulation in terms of epitaxial strain-favored oxygen vacancies, cationic interdiffusion, interfacial charge transfer, and space-charge effects. This study, therefore, provides a comprehensive description of the charge distribution and related mechanisms at the SMO/STO heterointerfaces, which is beneficial for the functionality manipulation via charge engineering at interfaces.

3.
Nano Lett ; 20(1): 88-94, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31851827

RESUMEN

Flexoelectricity is especially relevant for nanoscale structures, and it is expected to be largest at the tip of cracks. We demonstrate the presence of a huge flexoelectric polarization at crack tips in SrTiO3 by direct observation with scanning transmission electron microscopy. We observe an averaged polarization of 62 ± 16 µC cm-2 in the three unit cells adjacent to the crack tip, which is one of the largest flexoelectric polarizations ever reported. The polarization is screened by an electron density of 0.7 ± 0.1 e-/uc localized within one unit cell. These findings reveal the relevance of flexoelectricity for the science of crack formation and propagation.

4.
Nano Lett ; 19(2): 1131-1135, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30645131

RESUMEN

We present the fabrication and exploration of arrays of nanodots of SrRuO3 with dot sizes between 500 and 15 nm. Down to the smallest dot size explored, the samples were found to be magnetic with a maximum Curie temperature TC achieved by dots of 30 nm diameter. This peak in TC is associated with a dot-size-induced relief of the epitaxial strain, as evidenced by scanning transmission electron microscopy.

5.
Phys Rev Lett ; 120(23): 237002, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29932713

RESUMEN

SrTiO_{3} exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature T_{c}≈0.4 K. Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO_{3} with a charge carrier concentration from 0.3 to 2.2×10^{20} cm^{-3}, covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO_{3}. Furthermore, we determine T_{c}, 2Δ, and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.

6.
ACS Appl Mater Interfaces ; 7(41): 22775-85, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26415103

RESUMEN

The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.

7.
Sci Rep ; 5: 12309, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26169351

RESUMEN

The superconductor at the LaAlO3-SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron-phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron-phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron-phonon coupling in relation to the superconducting phase diagram. The electron-phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band.

8.
Phys Rev Lett ; 109(15): 157207, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23102365

RESUMEN

We present a study of the thickness dependence of magnetism and electrical conductivity in ultrathin La0.67Sr0.33MnO3 films grown on SrTiO3 (110) substrates. We found a critical thickness of 10 unit cells below which the conductivity of the films disappeared and simultaneously the Curie temperature increased, indicating a magnetic insulating phase at room temperature. These samples have a Curie temperature of about 560 K with a significant saturation magnetization of 1.2±0.2µ(B)/Mn. The canted antiferromagnetic insulating phase in ultra thin films of n<10 coincides with the occurrence of a higher symmetry structural phase with a different oxygen octahedra rotation pattern. Such a strain engineered phase is an interesting candidate for an insulating tunneling barrier in room temperature spin polarized tunneling devices.

9.
Nano Lett ; 9(9): 3220-4, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19691342

RESUMEN

Magnetic nanoparticles are of great scientific and technological interest. The application of ferromagnetic nanoparticles for high-density data storage has great potential, but energy efficient synthesis of uniform, isolated, and patternable nanoparticles that remain ferromagnetic at room temperature is not trivial. Here, we present a low-temperature solution synthesis method for FePtAu nanoparticles that addresses all those issues and therefore can be regarded as an important step toward applications. We show that the onset of the chemically ordered face-centered tetragonal (L1(0)) phase is obtained for thermal annealing temperatures as low as 150 degrees C. Large uniaxial magnetic anisotropy (10(7) erg/cm(3)) and a high long-range order parameter have been obtained. Our low-temperature solution annealing leaves the organic ligands intact, so that the possibility for postanneal monolayer formation and chemically assisted patterning on a surface is maintained.


Asunto(s)
Aleaciones/síntesis química , Oro/química , Hierro/química , Nanopartículas del Metal/química , Platino (Metal)/química , Temperatura , Aleaciones/química , Magnetismo , Ensayo de Materiales , Nanotecnología , Tamaño de la Partícula , Soluciones , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...