Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 25(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046014

RESUMEN

Perfume encapsulates are widely used in commercial products to control the kinetic release of odorant molecules, increase storage stability and/or improve deposition on different substrates. In most of the cases, they consist of core-shell polymeric microcapsules that contain fragrance molecules. A current challenge is to design and produce polymeric materials for encapsulation that are both resistant and non-persistent. The selection of such eco-friendly formulations is linked to a deep understanding of the polymeric material used for encapsulation and its biodegradation profile. To collect this information, pure samples of capsule shells are needed. In this article we present an innovative quantification method for residual volatiles based on pyrolysis-GC-MS to enable validation of sample quality prior to further testing. The presented analytical method also led to the development of a robust and comprehensive purification protocol for polymers from commercial samples. Standard techniques are not suited for this kind of measurement due to the non-covalent embedding of volatiles in the 3D structure of the polymers. We demonstrated the confounding impact of residual volatiles on the estimated biodegradability of fragrance encapsulates.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Perfumes/química , Polímeros/química , Biodegradación Ambiental , Cápsulas/química , Composición de Medicamentos/métodos , Odorantes/análisis
2.
J Sep Sci ; 38(18): 3209-3217, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26179324

RESUMEN

We previously showed that the relative response factors of volatile compounds were predictable from either combustion enthalpies or their molecular formulae only . We now extend this prediction to silylated derivatives by adding an increment in the ab initio calculation of combustion enthalpies. The accuracy of the experimental relative response factors database was also improved and its population increased to 490 values. In particular, more brominated compounds were measured, and their prediction accuracy was improved by adding a correction factor in the algorithm. The correlation coefficient between predicted and measured values increased from 0.936 to 0.972, leading to a mean prediction accuracy of ± 6%. Thus, 93% of the relative response factors values were predicted with an accuracy of better than ± 10%. The capabilities of the extended algorithm are exemplified by (i) the quick and accurate quantification of hydroxylated metabolites resulting from a biodegradation test after silylation and prediction of their relative response factors, without having the reference substances available; and (ii) the rapid purity determinations of volatile compounds. This study confirms that Gas chromatography with a flame ionization detector and using predicted relative response factors is one of the few techniques that enables quantification of volatile compounds without calibrating the instrument with the pure reference substance.

3.
Environ Toxicol Chem ; 33(5): 1005-16, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24453060

RESUMEN

An assessment of biodegradability was carried out for fragrance substances containing quaternary carbons by using data obtained from Organisation for Economic Co-operation and Development (OECD) 301F screening tests for ready biodegradation and from Biowin and Catalogic prediction models. Despite an expected challenging profile, a relatively high percentage of common-use fragrance substances showed significant biodegradation under the stringent conditions applied in the OECD 301F test. Among 27 test compounds, 37% met the pass level criteria after 28 d, while another 26% indicated partial breakdown (≥20% biodegradation). For several compounds for which structural analogs were available, the authors found that structures that were rendered less water soluble by either the presence of an acetate ester or the absence of oxygen tended to degrade to a lesser extent compared to the primary alcohols or oxygenated counterparts under the test conditions applied. Difficulties were encountered when attempting to correlate experimental with in silico data. Whereas the Biowin model combinations currently recommended by regulatory agencies did not allow for a reliable discrimination between readily and nonbiodegradable compounds, only a comparably small proportion of the chemicals studied (30% and 63% depending on the model) fell within the applicability domain of Catalogic, a factor that critically reduced its predictive power. According to these results, currently neither Biowin nor Catalogic accurately reflects the potential for biodegradation of fragrance compounds containing quaternary carbons.


Asunto(s)
Compuestos Orgánicos/metabolismo , Perfumes/química , Biodegradación Ambiental , Carbono/metabolismo , Simulación por Computador , Modelos Químicos , Monoterpenos/química , Monoterpenos/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...