Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38464208

RESUMEN

SCN8A epileptic encephalopathy (EE) is a severe epilepsy syndrome resulting from de novo mutations in the voltage-gated sodium channel Na v 1.6, encoded by the gene SCN8A . Na v 1.6 is expressed in both excitatory and inhibitory neurons, yet previous studies have primarily focused on the impact SCN8A mutations have on excitatory neuron function, with limited studies on the importance of inhibitory interneurons to seizure onset and progression. Inhibitory interneurons are critical in balancing network excitability and are known to contribute to the pathophysiology of other epilepsies. Parvalbumin (PV) interneurons are the most prominent inhibitory neuron subtype in the brain, making up about 40% of inhibitory interneurons. Notably, PV interneurons express high levels of Na v 1.6. To assess the role of PV interneurons within SCN8A EE, we used two mouse models harboring patient-derived SCN8A gain-of-function mutations, Scn8a D/+ , where the SCN8A mutation N1768D is expressed globally, and Scn8a W/+ -PV, where the SCN8A mutation R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A mutation selectively in PV interneurons led to the development of spontaneous seizures in Scn8a W/+ -PV mice and seizure-induced death, decreasing survival compared to wild-type. Electrophysiology studies showed that PV interneurons in Scn8a D/+ and Scn8a W/+ -PV mice were susceptible to depolarization block, a state of action potential failure. Scn8a D/+ and Scn8a W/+ -PV interneurons also exhibited increased persistent sodium current, a hallmark of SCN8A gain-of-function mutations that contributes to depolarization block. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed an increase in synaptic transmission failure at high frequencies (80-120Hz) as well as an increase in synaptic latency in Scn8a D/+ and Scn8a W/+ -PV interneurons. These data indicate a distinct impairment of synaptic transmission in SCN8A EE, potentially decreasing overall cortical network inhibition. Together, our novel findings indicate that failure of PV interneuron spiking via depolarization block along with frequency-dependent inhibitory synaptic impairment likely elicits an overall reduction in the inhibitory drive in SCN8A EE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.

2.
Transfusion ; 63(4): 826-838, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36907655

RESUMEN

BACKGROUND: Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, although it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. STUDY DESIGN AND METHODS: WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. RESULTS: When compared with antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b, and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. DISCUSSION: Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared with the well-studied immunogen alum vaccination.


Asunto(s)
Eritrocitos , Cambio de Clase de Inmunoglobulina , Ratones , Humanos , Animales , Eritrocitos/metabolismo , Isoanticuerpos , Inmunoglobulina G/metabolismo , Vacunación
3.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36712006

RESUMEN

Background: Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, though it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. Study Design and Methods: WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. Results: When compared to antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. Discussion: Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared to the well-studied immunogen alum vaccination.

4.
Front Neural Circuits ; 16: 1002013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160949

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) accounts for the deaths of 8-17% of patients with epilepsy. Although the mechanisms of SUDEP are essentially unknown, one proposed mechanism is respiratory arrest initiated by a convulsive seizure. In mice, we have previously observed that extended apnea occurs during the tonic phase of seizures. Although often survived, tonic seizures became fatal when breathing did not immediately recover postictally. We also found that respiratory muscles were tonically contracted during the apnea, suggesting that muscle contraction could be the cause of apnea. In the present study, we tested the hypothesis that pyramidal neurons of the motor cortex drive motor units during the tonic phase, which produces apnea. Mice harboring the patient-derived N1768D point mutation of an Scn8a allele were crossed with transgenic mice such that inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADD) receptors were selectively expressed in excitatory forebrain neurons. We then triggered audiogenic and hippocampal (HC) stimulated seizures under control conditions and when excitatory forebrain neurons were inhibited with the synthetic ligand Clozapine-N-Oxide (CNO). We found that inhibition with CNO was sufficient to increase seizure threshold of HC stimulated, but not audiogenic, seizures. In addition, regardless of seizure type, CNO nearly eliminated epileptiform activity that occurred proximal to the tonic phase; however, the seizure behaviors, notably the tonic phase and concomitant apnea, were unchanged. We interpret these results to indicate that while cortical neurons are likely critical for epileptogenesis and seizure initiation, the behavioral manifestations of tonic seizures are generated by neural circuitry in the mid- and/or hindbrain.


Asunto(s)
Clozapina , Drogas de Diseño , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Animales , Apnea/genética , Modelos Animales de Enfermedad , Epilepsia/genética , Ligandos , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.6 , Óxidos , Prosencéfalo , Convulsiones/genética
5.
Transfusion ; 61(7): 2169-2178, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34181769

RESUMEN

BACKGROUND: Despite the significant adverse clinical consequences of RBC alloimmunization, our understanding of the signals that induce immune responses to transfused RBCs remains incomplete. Though RBC storage has been shown to enhance alloimmunization in the hen egg lysozyme, ovalbumin, and human Duffy (HOD) RBC alloantigen mouse model, the molecular signals leading to immune activation in this system remain unclear. Given that the nonclassical major histocompatibility complex (MHC) Class I molecule CD1D can bind to multiple different lysophospholipids and direct immune activation, we hypothesized that storage of RBCs increases lysophospholipids known to bind CD1D, and further that recipient CD1D recognition of these altered lipids mediates storage-induced alloimmunization responses. STUDY DESIGN AND METHODS: We used a mass spectrometry-based approach to analyze the changes in lysophospholipids that are induced during storage of mouse RBCs. CD1D knockout (CD1D-KO) and wild-type (WT) control mice were transfused with stored HOD RBCs to measure the impact of CD1D deficiency on RBC alloimmunization. RESULTS: RBC storage results in alterations in multiple lysophospholipid species known to bind to CD1D and activate the immune system. Prior to transfusion, CD1D-deficient mice had lower baseline levels of polyclonal immunoglobulin (IgG) relative to WT mice. In response to stored RBC transfusion, CD1D-deficient mice generated similar levels of anti-HOD IgM and anti-HOD IgG. CONCLUSION: Although storage of RBCs leads to alteration of several lysophospholipids known to be capable of binding CD1D, storage-induced RBC alloimmunization responses are not impacted by recipient CD1D deficiency.


Asunto(s)
Antígenos CD1d/inmunología , Conservación de la Sangre , Transfusión Sanguínea , Eritrocitos/inmunología , Isoanticuerpos/biosíntesis , Isoantígenos/inmunología , Lisofosfolípidos/sangre , Reacción a la Transfusión/inmunología , Alarminas/sangre , Alarminas/inmunología , Animales , Especificidad de Anticuerpos , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Sistema del Grupo Sanguíneo Duffy/genética , Sistema del Grupo Sanguíneo Duffy/inmunología , Femenino , Inmunización , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Inmunoglobulina M/biosíntesis , Inmunoglobulina M/inmunología , Isoanticuerpos/inmunología , Lisofosfolípidos/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Muramidasa/inmunología , Ovalbúmina/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...