Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 39(12): 1669-1685, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32959123

RESUMEN

KEY MESSAGE: tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage. AtTER2 was initially shown to partially overlap with the 5' UTR of the tRNA ADENOSINE DEAMINASE 3 (TAD3) gene. However, updated genome annotation showed that AtTER2 was completely embedded in TAD3, raising the possibility that phenotypes ascribed to AtTER2 could be derived from TAD3. Here we show through strand-specific RNA-Seq, strand-specific qRT-PCR and bioinformatic analyses that AtTER2 does not encode a stable lncRNA. Further examination of the original tad3 (ter2-1/tad3-1) mutant revealed expression of an antisense transcript driven by a cryptic promoter in the T-DNA. Hence, a new hypomorphic allele of TAD3 (tad3-2) was examined. tad3-2 mutants showed hypersensitivity to DNA damage, but no deregulation of telomerase, suggesting that the telomerase phenotype of tad3-1 mutants reflects an off-target effect. Unexpectedly, however, tad3-2 plants displayed progressive loss of telomeric DNA over successive generations that was not accompanied by alteration of terminal architecture or end protection. The phenotype was exacerbated in plants lacking the telomerase processivity factor POT1a, indicating that TAD3 promotes telomere maintenance through a non-canonical, telomerase-independent pathway. The transcriptome of tad3-2 mutants revealed significant dysregulation of genes involved in auxin signaling and glucosinolate biosynthesis, pathways that intersect the stress response, cell cycle regulation and DNA metabolism. These findings indicate that the TAD3 locus indirectly contributes to telomere length homeostasis by altering the metabolic profile in Arabidopsis.


Asunto(s)
Adenosina Desaminasa/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , ARN de Planta/genética , Telómero/genética , Regiones no Traducidas 3' , Adenosina Desaminasa/metabolismo , Apoptosis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Daño del ADN , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN , Telomerasa/genética , Telomerasa/metabolismo , Homeostasis del Telómero/genética , Homeostasis del Telómero/fisiología
2.
Proc Natl Acad Sci U S A ; 116(49): 24542-24550, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31754031

RESUMEN

Telomerase is essential for maintaining telomere integrity. Although telomerase function is widely conserved, the integral telomerase RNA (TR) that provides a template for telomeric DNA synthesis has diverged dramatically. Nevertheless, TR molecules retain 2 highly conserved structural domains critical for catalysis: a template-proximal pseudoknot (PK) structure and a downstream stem-loop structure. Here we introduce the authentic TR from the plant Arabidopsis thaliana, called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT. This RNA is distinct from the RNA previously described as the templating telomerase RNA, AtTER1. AtTR is a 268-nt Pol III transcript necessary for telomere maintenance in vivo and sufficient with TERT to reconstitute telomerase activity in vitro. Bioinformatics analysis identified 85 AtTR orthologs from 3 major clades of plants: angiosperms, gymnosperms, and lycophytes. Through phylogenetic comparisons, a secondary structure model conserved among plant TRs was inferred and verified using in vitro and in vivo chemical probing. The conserved plant TR structure contains a template-PK core domain enclosed by a P1 stem and a 3' long-stem P4/5/6, both of which resemble a corresponding structural element in ciliate and vertebrate TRs. However, the plant TR contains additional stems and linkers within the template-PK core, allowing for expansion of PK structure from the simple PK in the smaller ciliate TR during evolution. Thus, the plant TR provides an evolutionary bridge that unites the disparate structures of previously characterized TRs from ciliates and vertebrates.


Asunto(s)
Arabidopsis/genética , ARN de Planta/química , ARN/química , Telomerasa/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cilióforos/genética , Evolución Molecular , Humanos , Conformación de Ácido Nucleico , Filogenia , ARN/metabolismo , ARN de Planta/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética
3.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4594-8, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24094165

RESUMEN

Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 µm to 355±6 µm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples.


Asunto(s)
Materiales Biocompatibles/química , Durapatita/química , Rayos Láser , Acero Inoxidable/química , Dureza , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...