Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648719

RESUMEN

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Asunto(s)
Proteínas de Drosophila , Proteínas del Choque Térmico HSP40 , Memoria a Largo Plazo , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Memoria a Largo Plazo/fisiología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Cuerpos Pedunculados/metabolismo , Multimerización de Proteína , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
2.
Cell Mol Life Sci ; 77(18): 3657-3670, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31796991

RESUMEN

Huntington's disease (HD) is a severe neurodegenerative disorder caused by poly Q repeat expansion in the Huntingtin (Htt) gene. While the Htt amyloid aggregates are known to affect many cellular processes, their role in translation has not been addressed. Here we report that pathogenic Htt expression causes a protein synthesis deficit in cells. We find a functional prion-like protein, the translation regulator Orb2, to be sequestered by Htt aggregates in cells. Co-expression of Orb2 can partially rescue the lethality associated with poly Q expanded Htt. These findings can be relevant for HD as human homologs of Orb2 are also sequestered by pathogenic Htt aggregates. Our work suggests that translation dysfunction is one of the contributors to the pathogenesis of HD and new therapies targeting protein synthesis pathways might help to alleviate disease symptoms.


Asunto(s)
Proteína Huntingtina/metabolismo , Biosíntesis de Proteínas , Animales , Animales Modificados Genéticamente/metabolismo , Células Cultivadas , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Neuronas/citología , Neuronas/metabolismo , Péptidos/metabolismo , Polirribosomas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/antagonistas & inhibidores , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
3.
EMBO Rep ; 15(5): 609-17, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24631914

RESUMEN

Eco1 is the acetyltransferase that establishes sister-chromatid cohesion during DNA replication. A budding yeast strain with an eco1 mutation that genocopies Roberts syndrome has reduced ribosomal DNA (rDNA) transcription and a transcriptional signature of starvation. We show that deleting FOB1--a gene that encodes a replication fork-blocking protein specific for the rDNA region--rescues rRNA production and partially rescues transcription genome-wide. Further studies show that deletion of FOB1 corrects the genome-wide replication defects, nucleolar structure, and rDNA segregation that occur in the eco1 mutant. Our study highlights that the presence of cohesin at the rDNA locus has a central role in controlling global DNA replication and gene expression.


Asunto(s)
Acetiltransferasas/genética , Replicación del ADN/genética , ADN Ribosómico/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/genética , ADN Ribosómico/genética , Eliminación de Gen , Mutación , ARN Ribosómico/genética , Ribosomas/metabolismo , Transcripción Genética/genética , Cohesinas
4.
Mol Biol Cell ; 25(3): 337-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307683

RESUMEN

The cohesin complex contributes to ribosome function, although the molecular mechanisms involved are unclear. Compromised cohesin function is associated with a class of diseases known as cohesinopathies. One cohesinopathy, Roberts syndrome (RBS), occurs when a mutation reduces acetylation of the cohesin Smc3 subunit. Mutation of the cohesin acetyltransferase is associated with impaired rRNA production, ribosome biogenesis, and protein synthesis in yeast and human cells. Cohesin binding to the ribosomal DNA (rDNA) is evolutionarily conserved from bacteria to human cells. We report that the RBS mutation in yeast (eco1-W216G) exhibits a disorganized nucleolus and reduced looping at the rDNA. RNA polymerase I occupancy of the genes remains normal, suggesting that recruitment is not impaired. Impaired rRNA production in the RBS mutant coincides with slower rRNA cleavage. In addition to the RBS mutation, mutations in any subunit of the cohesin ring are associated with defects in ribosome biogenesis. Depletion or artificial destruction of cohesion in a single cell cycle is associated with loss of nucleolar integrity, demonstrating that the defects at the rDNA can be directly attributed to loss of cohesion. Our results strongly suggest that organization of the rDNA provided by cohesion is critical for formation and function of the nucleolus.


Asunto(s)
Acetiltransferasas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN Ribosómico/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Cromatina/genética , Anomalías Craneofaciales/genética , Ectromelia/genética , Hipertelorismo/genética , Microscopía Electrónica de Transmisión , Mutación , Proteínas Nucleares/metabolismo , Región Organizadora del Nucléolo/genética , ARN Polimerasa I/genética , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , Cohesinas
5.
Arch Biochem Biophys ; 529(2): 99-104, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23232081

RESUMEN

Methylglyoxal (MG) reacts with proteins to form advanced glycation end products (AGEs). Although hemoglobin modification by MG is known, the modified protein is not yet characterized. We have studied the nature of AGE formed by MG on human hemoglobin (HbA(0)) and its effect on structure and function of the protein. After reaction of HbA(0) with MG, the modified protein (MG-Hb) was separated and its properties were compared with those of the unmodified protein HbA(0). As shown by MALDI-mass spectrometry, MG converted Arg-92α and Arg-104ß to hydroimidazolones in MG-Hb. Compared to HbA(0), MG-Hb exhibited decreased absorbance around 280nm, reduced tryptophan fluorescence (excitation 285nm) and increased α-helix content. However, MG modification did not change the quaternary structure of the heme protein. MG-Hb appeared to be more thermolabile than HbA(0). The modified protein was found to be more effective than HbA(0) in H(2)O(2)-mediated iron release and oxidative damages involving Fenton reaction. MG-Hb exhibited less peroxidase activity and more esterase activity than HbA(0). MG-induced structural and functional changes of hemoglobin may enhance oxidative stress and associated complications, particularly in diabetes mellitus with increased level of MG.


Asunto(s)
Hemoglobinas/química , Hemoglobinas/ultraestructura , Piruvaldehído/química , Sitios de Unión , Humanos , Unión Proteica , Relación Estructura-Actividad
6.
PLoS Genet ; 8(6): e1002749, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719263

RESUMEN

Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy mutations eco1-W216G and smc1-Q843Δ are associated with defects in ribosome biogenesis and a reduction in the actively translating fraction of ribosomes, eiF2α-phosphorylation, and (35)S-methionine incorporation, all of which indicate a deficit in protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843Δ mutants produce less ribosomal RNA, which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene expression. Reduced translational capacity could contribute to the human cohesinopathies.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Anomalías Craneofaciales , Ectromelia , Hipertelorismo , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Acetiltransferasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Ectromelia/genética , Ectromelia/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Polirribosomas/genética , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
7.
J Cell Biol ; 189(2): 201-10, 2010 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-20404106

RESUMEN

The cohesin protein complex is best known for its role in sister chromatid cohesion, which is crucial for accurate chromosome segregation. Mutations in cohesin proteins or their regulators have been associated with human diseases (termed cohesinopathies). The developmental defects observed in these diseases indicate a role for cohesin in gene regulation distinct from its role in chromosome segregation. In mammalian cells, cohesin stably interacts with specific chromosomal sites and colocalizes with CTCF, a protein that promotes long-range DNA interactions, implying a role for cohesin in genome organization. Moreover, cohesin defects compromise the subnuclear position of chromatin. Therefore, defects in the cohesin network that alter gene expression and genome organization may underlie cohesinopathies.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , ADN/genética , ADN/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos , Mutación , Cohesinas
8.
J Cell Biol ; 187(4): 455-62, 2009 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-19948494

RESUMEN

In Saccharomyces cerevisiae, chromatin is spatially organized within the nucleus with centromeres clustering near the spindle pole body, telomeres clustering into foci at the nuclear periphery, ribosomal DNA repeats localizing within a single nucleolus, and transfer RNA (tRNA) genes present in an adjacent cluster. [corrected] Furthermore, certain genes relocalize from the nuclear interior to the periphery upon transcriptional activation. The molecular mechanisms responsible for the organization of the genome are not well understood. We find that evolutionarily conserved proteins in the cohesin network play an important role in the subnuclear organization of chromatin. Mutations that cause human cohesinopathies had little effect on chromosome cohesion, centromere clustering, or viability when expressed in yeast. However, two mutations in particular lead to defects in (a) GAL2 transcription and recruitment to the nuclear periphery, (b) condensation of mitotic chromosomes, (c) nucleolar morphology, and (d) tRNA gene-mediated silencing and clustering of tRNA genes. We propose that the cohesin network affects gene regulation by facilitating the subnuclear organization of chromatin.


Asunto(s)
Acetiltransferasas/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetiltransferasas/fisiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/fisiología , Aberraciones Cromosómicas , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Humanos , Datos de Secuencia Molecular , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Proteínas Nucleares/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/fisiología , Cohesinas
9.
Biochim Biophys Acta ; 1780(5): 800-8, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18339326

RESUMEN

Increased fructose concentration in diabetes mellitus causes fructation of several proteins. Here we have studied fructose-induced modifications of hemoglobin. We have demonstrated structural changes in fructose-modified hemoglobin (Fr-Hb) by enhanced fluorescence emission with excitation at 285 nm, more surface accessible tryptophan residues by using acrylamide, changes in secondary and tertiary structures by CD spectroscopy, and increased thermolability by using differential scanning calorimetry in comparison with those of normal hemoglobin, HbA(0). Release of iron from hemoglobin is directly related with the extent of fructation. H2O2-induced iron release from Fr-Hb is significantly higher than that from HbA(0). In the presence of H2O2, Fr-Hb degrades arachidonic acid, deoxyribose and plasmid DNA more efficiently than HbA(0), and these processes are significantly inhibited by desferrioxamine or mannitol. Thus increased iron release from Fr-Hb may cause enhanced formation of free radicals and oxidative stress in diabetes. Compared to HbA(0), Fr-Hb exhibits increased carbonyl formation, an index of oxidative modification. Functional modification in Fr-Hb has also been demonstrated by its decreased peroxidase activity and increased esterase activity in comparison with respective HbA(0) activities. Molecular modeling study reveals Lys 7alpha, Lys 127alpha and Lys 66beta to be the probable potential targets for fructation in HbA(0).


Asunto(s)
Diabetes Mellitus/metabolismo , Fructosa/química , Hemoglobina Glucada/química , Hemoglobinas/química , Estrés Oxidativo , Adulto , Ácido Araquidónico/química , Rastreo Diferencial de Calorimetría , Catálisis , Dicroismo Circular , ADN/química , Desoxirribosa/química , Esterasas/química , Hemoglobina Glucada/síntesis química , Hemoglobina A/química , Humanos , Peróxido de Hidrógeno/química , Hierro/química , Peroxidación de Lípido , Modelos Moleculares , Peroxidasa/química , Carbonilación Proteica , Desnaturalización Proteica , Espectrometría de Fluorescencia , Espectrofotometría , Temperatura de Transición
10.
Mol Cell Biochem ; 301(1-2): 251-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17549609

RESUMEN

Heme proteins--hemoglobin and myoglobin possess esterase activities. Studies with purified hemoglobin from normal individuals and diabetic patients revealed that the esterase activity as measured from hydrolysis of p-nitrophenyl acetate (p-NPA) was higher in diabetic condition and increased progressively with extent of the disease. HbA(1c), the major glycated hemoglobin, which increases proportionately with blood glucose level in diabetes mellitus, exhibited more esterase activity than the non-glycated hemoglobin fraction, HbA(0), as demonstrated spectrophotometrically as well as by activity staining. Glycation influenced esterase activity of hemoglobin by increasing the affinity for the substrate and the rate of the reaction. Both HbA(0) and HbA(1c)-mediated catalysis of p-NPA hydrolysis was pH-dependent. Esterase activity of in vitro-glycated myoglobin (GMb) was also higher than that of its non-glycated analog (Mb). The amplified esterase activities of hemoglobin and myoglobin might be associated with glycation-induced structural modifications of the proteins.


Asunto(s)
Glucemia/metabolismo , Esterasas/metabolismo , Hemoglobinas/metabolismo , Mioglobina/metabolismo , Adulto , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Persona de Mediana Edad , Nitrofenoles/metabolismo
11.
Protein J ; 25(3): 202-11, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16755386

RESUMEN

Trifluoperazine (TFZ), a phenothiazine drug, penetrates into human erythrocytes and releases oxygen by interaction with hemoglobin. TFZ-induced oxygen release from hyperglycemic erythrocytes isolated from diabetic patients is considerably less compared to that from the cells of normoglycemic individuals. In diabetes mellitus, hemoglobin is significantly glycated by glucose. Non-glycated hemoglobin, HbA0 and its major glycated analog, HbA1c have been separated from the blood samples of diabetic patients. TFZ releases considerable amount of oxygen from HbA0, but very little from HbA1c. Spectrofluorimetric studies reveal that TFZ forms excited state complexes with both HbA0 and HbAlc. Titration of HbA0 with TFZ in a spectrophotometric study exhibits two isosbestic points. Similar experiment with HbAlc causes gradual loss of the Soret peak without appearance of any isosbestic point indicating a possibility of heme loss during interaction, which is also supported by gel filtration experiment and SDS-PAGE experiment followed by heme staining. The results suggest that drug action on hemoglobin is influenced by glycation-induced structural modification of the protein.


Asunto(s)
Hemoglobina Glucada/metabolismo , Hemoglobina A/metabolismo , Trifluoperazina/metabolismo , Trifluoperazina/farmacología , Electroforesis en Gel de Poliacrilamida , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hemoglobina Glucada/química , Hemoglobina Glucada/efectos de los fármacos , Glicosilación , Hemo/análisis , Hemoglobina A/química , Hemoglobina A/efectos de los fármacos , Humanos , Oxígeno/metabolismo , Espectrofotometría Ultravioleta
12.
J Biosci ; 29(3): 281-91, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15381849

RESUMEN

Protoporphyrin IX and its derivatives are used as photosensitizers in the photodynamic therapy of cancer. Protoporphyrin IX penetrates into human red blood cells and releases oxygen from them. This leads to a change in the morphology of the cells. Spectrophotometric studies reveal that protoporphyrin IX interacts with haemoglobin and myoglobin forming ground state complexes. For both proteins, the binding affinity constant decreases, while the possible number of binding sites increases, as the aggregation state of the porphyrin is increased. The interactions lead to conformational changes of both haemoglobin and myoglobin as observed in circular dichroism studies. Upon binding with the proteins, protoporphyrin IX releases the heme-bound oxygen from the oxyproteins, which is dependent on the stoichiometric ratios of the porphyrin : protein. The peroxidase activities of haemoglobin and myoglobin are potentiated by the protein-porphyrin complexation. Possible mechanisms underlying the relation between the porphyrin-induced structural modifications of the heme proteins and alterations in their functional properties have been discussed. The findings may have a role in establishing efficacy of therapeutic uses of porphyrins as well as in elucidating their mechanisms of action as therapeutic agents.


Asunto(s)
Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Mioglobina/metabolismo , Protoporfirinas/química , Protoporfirinas/genética , Adulto , Sitios de Unión , Cromatografía en Gel , Dicroismo Circular , Hemo/química , Humanos , Mioglobina/química , Oxígeno/química , Oxígeno/metabolismo , Peroxidasas/metabolismo , Fármacos Fotosensibilizantes/farmacología , Porfirinas/metabolismo , Unión Proteica , Conformación Proteica , Espectrofotometría , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...