Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(737): eabm2090, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446901

RESUMEN

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Insuficiencia Renal Crónica , Adolescente , Adulto , Humanos , Femenino , Masculino , Animales , Ratones , Caracteres Sexuales , Piruvatos , Glucosa , Riñón
2.
Lab Chip ; 22(10): 1929-1942, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35383790

RESUMEN

Organ-on-a-chip systems that recapitulate tissue-level functions have been proposed to improve in vitro-in vivo correlation in drug development. Significant progress has been made to control the cellular microenvironment with mechanical stimulation and fluid flow. However, it has been challenging to introduce complex 3D tissue structures due to the physical constraints of microfluidic channels or membranes in organ-on-a-chip systems. Inspired by 4D bioprinting, we develop a subtractive manufacturing technique where a flexible sacrificial material can be patterned on a 2D surface, swell and shape change when exposed to aqueous hydrogel, and subsequently degrade to produce perfusable networks in a natural hydrogel matrix that can be populated with cells. The technique is applied to fabricate organ-specific vascular networks, vascularized kidney proximal tubules, and terminal lung alveoli in a customized 384-well plate and then further scaled to a 24-well plate format to make a large vascular network, vascularized liver tissues, and for integration with ultrasound imaging. This biofabrication method eliminates the physical constraints in organ-on-a-chip systems to incorporate complex ready-to-perfuse tissue structures in an open-well design.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Bioimpresión/métodos , Hidrogeles/química , Microfluídica , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
J Am Soc Nephrol ; 31(11): 2705-2724, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32900843

RESUMEN

BACKGROUND: Antibody-mediated rejection (AMR) accounts for >50% of kidney allograft loss. Donor-specific antibodies (DSA) against HLA and non-HLA antigens in the glomeruli and the tubulointerstitium cause AMR while inflammatory cytokines such as TNFα trigger graft injury. The mechanisms governing cell-specific injury in AMR remain unclear. METHODS: Unbiased proteomic analysis of laser-captured and microdissected glomeruli and tubulointerstitium was performed on 30 for-cause kidney biopsy specimens with early AMR, acute cellular rejection (ACR), or acute tubular necrosis (ATN). RESULTS: A total of 107 of 2026 glomerular and 112 of 2399 tubulointerstitial proteins was significantly differentially expressed in AMR versus ACR; 112 of 2026 glomerular and 181 of 2399 tubulointerstitial proteins were significantly dysregulated in AMR versus ATN (P<0.05). Basement membrane and extracellular matrix (ECM) proteins were significantly decreased in both AMR compartments. Glomerular and tubulointerstitial laminin subunit γ-1 (LAMC1) expression decreased in AMR, as did glomerular nephrin (NPHS1) and receptor-type tyrosine-phosphatase O (PTPRO). The proteomic analysis revealed upregulated galectin-1, which is an immunomodulatory protein linked to the ECM, in AMR glomeruli. Anti-HLA class I antibodies significantly increased cathepsin-V (CTSV) expression and galectin-1 expression and secretion in human glomerular endothelial cells. CTSV had been predicted to cleave ECM proteins in the AMR glomeruli. Glutathione S-transferase ω-1, an ECM-modifying enzyme, was significantly increased in the AMR tubulointerstitium and in TNFα-treated proximal tubular epithelial cells. CONCLUSIONS: Basement membranes are often remodeled in chronic AMR. Proteomic analysis performed on laser-captured and microdissected glomeruli and tubulointerstitium identified early ECM remodeling, which may represent a new therapeutic opportunity.


Asunto(s)
Membrana Basal/metabolismo , Matriz Extracelular/metabolismo , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Glomérulos Renales/patología , Túbulos Renales/patología , Adulto , Anciano , Aloinjertos/metabolismo , Aloinjertos/patología , Anticuerpos/metabolismo , Biopsia , Catepsinas/metabolismo , Línea Celular , Cisteína Endopeptidasas/metabolismo , Matriz Extracelular/patología , Femenino , Galectina 1/genética , Galectina 1/metabolismo , Expresión Génica , Glutatión Transferasa/metabolismo , Rechazo de Injerto/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Glomérulos Renales/metabolismo , Trasplante de Riñón , Túbulos Renales/metabolismo , Laminina/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Necrosis , Proteómica , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...