Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625689

RESUMEN

Phakopsora nishidana has recently been reported as the causal organism of rust on edible fig, Ficus carica in South Africa (SA) (Boshoff et al. 2022). This contradicted reports by Doidge (1927, 1950) and Verwoerd (1929) who listed Cerotelium fici as the causal organism of the disease in SA. Similarities in urediniospore morphology and differing taxonomic interpretations most likely contributed to the use of both pathogen names as the causal agents for fig rust (Boshoff et al. 2022; Padamsee and McKenzie 2024). In January 2023 rust was commonly observed on nursery specimens of creeping fig, Ficus pumila, a popular evergreen and fast-growing garden plant in SA. Ficus pumila is native to southern China, Indochina, and eastern Asia but has been introduced to many countries worldwide (https://powo.science.kew.org/ accessed 20 March 2024). The F. pumila rust isolate collected in Somerset West (34°07'00.70"S, 18°52'41.75"E; Western Cape (WC) province) was identified using the sequenced 5.8S rRNA-ITS2-28S rRNA locus. When used in a BLAST analysis, this F. pumila isolate (GenBank accession number OR835538) shared the best homology with the Vermont P. nishidana isolate (34°24'33.37"S, 19°08'59.24"E) (MZ047090; e-value 0.0, 99.7% identity, 1400/1404 bp) reported on edible fig by Boshoff et al. (2022). Other P. nishidana isolates with excellent homology were KY764080 (e-value 0.0, 99.8% identity, 1012/1014 bp), KY764081 (e-value 0.0, 99% identity, 882/885 bp) and MF580676 (e-value 0.0, 99.3% identity, 981/988 bp). Accessions were used in a phylogenetic study that included four other rust samples collected from F. carica trees in Somerset West, WC (OR835534; 34°03'37.26"S, 18°51'02.18"E), Onrus River, WC (OR835535; 34°24'43.10"S, 19°09'57.99"E), Elgin, WC (OR835536; 34°14'31.37"S, 19°03'05.38"E), and Bloemfontein, Free State province (OR835537; 29°05'05.1"S 26°09'09.5"E). Reference sequences were as described in Boshoff et al. (2022). Despite limited variation, all six South African isolates, including the F. pumila isolate, grouped with the three P. nishidana reference isolates, but separate from the three P. myrtacearum isolates collected from eucalyptus trees (Maier et al. 2016). Uredinia on F. pumila leaves were mostly hypophyllous and surrounded by a halo of brown, necrotic tissue. On the upper leaf surface, the lesions appeared as small, dark leaf spots with infrequent sporulation. Urediniospores were echinulate, mostly obovoid or elliptical and their cell walls pale-yellow to yellowish-brown. The mean width and length of urediniospores were 16.7 x 21.3 µm. No telia were observed. Applying standard rust inoculation and incubation procedures (Boshoff et al. 2022), F. pumila plants inoculated with P. nishidana isolate PREM63073 produced sporulating uredinia on the abaxial surface of leaves. Likewise, inoculation of F. carica cv. Kadota leaves with the F. pumila isolate OR835538 yielded sporulating lesions containing urediniospores typical of P. nishidana, on the lower surface. Based on both the DNA sequence data and controlled infection studies, our study confirmed the host status of F. pumila for P. nishidana. The occurrence of rust on creeping fig plants in nurseries, the evergreen status of the creeper, and thus the potential to harbor the pathogen during winter, are likely to contribute to the spread of fig rust in SA.

2.
Mol Plant Microbe Interact ; 37(3): 290-303, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37955552

RESUMEN

Puccinia coronata f. sp. avenae (Pca) is an important fungal pathogen causing crown rust that impacts oat production worldwide. Genetic resistance for crop protection against Pca is often overcome by the rapid virulence evolution of the pathogen. This study investigated the factors shaping adaptive evolution of Pca using pathogen populations from distinct geographic regions within the United States and South Africa. Phenotypic and genome-wide sequencing data of these diverse Pca collections, including 217 isolates, uncovered phylogenetic relationships and established distinct genetic composition between populations from northern and southern regions from the United States and South Africa. The population dynamics of Pca involve a bidirectional movement of inoculum between northern and southern regions of the United States and contributions from clonality and sexuality. The population from South Africa is solely clonal. A genome-wide association study (GWAS) employing a haplotype-resolved Pca reference genome was used to define 11 virulence-associated loci corresponding to 25 oat differential lines. These regions were screened to determine candidate Avr effector genes. Overall, the GWAS results allowed us to identify the underlying genetic factors controlling pathogen recognition in an oat differential set used in the United States to assign pathogen races (pathotypes). Key GWAS findings support complex genetic interactions in several oat lines, suggesting allelism among resistance genes or redundancy of genes included in the differential set, multiple resistance genes recognizing genetically linked Avr effector genes, or potentially epistatic relationships. A careful evaluation of the composition of the oat differential set accompanied by the development or implementation of molecular markers is recommended. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Puccinia , Resistencia a la Enfermedad/genética , Avena/genética , Avena/microbiología , Virulencia/genética , Estudio de Asociación del Genoma Completo , Filogenia , Enfermedades de las Plantas/microbiología , Basidiomycota/genética , Dinámica Poblacional
3.
Plant Dis ; 108(1): 20-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37580885

RESUMEN

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat in South Africa (SA) and is primarily controlled using resistant cultivars. Understanding virulence diversity of Pgt is essential for successful breeding of resistant cultivars. Samples of infected wheat stems were collected across the major wheat-growing regions of SA from 2016 to 2020 to determine the pathogenic variability of Pgt isolates. Seven races were identified from 517 isolates pathotyped. The most frequently found races were 2SA104 (BPGSC + Sr9h,27,Kw) (35% frequency) and 2SA88 (TTKSF + Sr8b) (33%). Race 2SA42 (PTKSK + Sr8b), which was found in 2017, and 2SA5 (BFGSF + Sr9h), identified in 2017, are new races. The Ug99 variant race 2SA42 is similar in its virulence to 2SA107 (PTKST + Sr8b) except for avirulence to Sr24 and virulence to Sr8155B1. Race 2SA5 is closely related in its virulence to existing races that commonly infect triticale. Certain races showed limited geographical distribution. Races 2SA5, 2SA105, and 2SA108 were found only in the Western Cape, whereas 2SA107 and 2SA42 were detected only in the Free State province. The new and existing races were compared using microsatellite (SSR) marker analysis and their virulence on commercial cultivars was also determined. Seedling response of 113 wheat entries against the new races, using 2SA88, 2SA88+9h, 2SA106, and 2SA107 as controls, revealed 2SA107 as the most virulent (67 entries susceptible), followed by 2SA42 (64), 2SA106 (60), 2SA88+9h (59), 2SA88 (25), and 2SA5 (17). Thus, 2SA5 may not pose a significant threat to local wheat production. SSR genotyping revealed that 2SA5 is genetically distinct from all other SA Pgt races.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Puccinia , Sudáfrica , Resistencia a la Enfermedad/genética , Fitomejoramiento , Basidiomycota/fisiología
4.
Theor Appl Genet ; 136(11): 231, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875643

RESUMEN

KEY MESSAGE: A novel leaf rust resistance locus located on a terminal segment (0-69.29 Mb) of Thinopyrum intermedium chromosome arm 7JsS has been introduced into wheat genome for disease resistance breeding. Xiaoyan 78829, a wheat-Thinopyrum intermedium partial amphiploid, exhibits excellent resistance to fungal diseases in wheat. To transfer its disease resistance to common wheat (Triticum aestivum), we previously developed a translocation line WTT26 using chromosome engineering. Disease evaluation showed that WTT26 was nearly immune to 14 common races of leaf rust pathogen (Puccinia triticina) and highly resistant to Ug99 race PTKST of stem rust pathogen (P. graminis f. sp. tritici) at the seedling stage. It also displayed high adult plant resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici). Cytogenetic and molecular marker analysis revealed that WTT26 carried a T4BS·7JsS chromosome translocation. Once transferred into the susceptible wheat genetic background, chromosome 7JsS exhibited its resistance to leaf rust, indicating that the resistance locus was located on this alien chromosome. To enhance the usefulness of this locus in wheat breeding, we further developed several new translocation lines with small Th. intermedium segments using irradiation and developed 124 specific markers using specific-locus amplified fragment sequencing, which increased the marker density of chromosome 7JsS. Furthermore, a refined physical map of chromosome 7JsS was constructed with 74 specific markers, and six bins were thus arranged according to the co-occurrence of markers and alien chromosome segments. Combining data from specific marker amplification and resistance evaluation, we mapped a new leaf rust resistance locus in the 0-69.29 Mb region on chromosome 7JsS. The translocation lines carrying the new leaf rust resistance locus and its linked markers will contribute to wheat disease-resistance breeding.


Asunto(s)
Basidiomycota , Triticum , Triticum/microbiología , Resistencia a la Enfermedad/genética , Fitomejoramiento , Cromosomas de las Plantas/genética , Poaceae/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
5.
Mycologia ; 114(2): 319-336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35363583

RESUMEN

Rust fungi are important plant pathogens and have been extensively studied on crops and other host plants worldwide. This study describes the heterecious life cycle of a rust fungus on Digitaria eriantha (finger grass) and the Solanum species S. lichtensteinii (large yellow bitter apple), S. campylacanthum (bitter apple), and S. melongena (eggplant) in South Africa. Following field observations, inoculation studies involving telial isolates collected from Digitaria plants produced spermogonia and aecia on S. lichtensteinii, S. campylacanthum, and S. melongena. Likewise, inoculation of finger grass with aeciospores collected from the aforementioned Solanum species produced uredinia on D. eriantha. Pennisetum glaucum (pearl millet varieties Milkstar and Okashana, as well as 17 experimental lines) and S. elaeagnifolium (silverleaf nightshade or bitter apple) were resistant to the rust isolates. Morphological descriptions and molecular phylogenetic data confirmed the identity of the rust on Digitaria as P. digitariae, herein reinstated as a species and closely related to P. penicillariae the pearl millet rust, also reinstated. Puccinia digitariae has a macrocyclic, heterecious life cycle in which teliospores overwinter on dormant D. eriantha plants. Aecia sporulate on species of Solanum during spring and early summer to provide inocula that infect new growth of Digitaria.


Asunto(s)
Basidiomycota , Solanum , Animales , Digitaria , Estadios del Ciclo de Vida , Filogenia , Enfermedades de las Plantas/microbiología , Plantas , Puccinia , Sudáfrica
6.
Nat Genet ; 54(3): 227-231, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35288708

RESUMEN

The cloning of agronomically important genes from large, complex crop genomes remains challenging. Here we generate a 14.7 gigabase chromosome-scale assembly of the South African bread wheat (Triticum aestivum) cultivar Kariega by combining high-fidelity long reads, optical mapping and chromosome conformation capture. The resulting assembly is an order of magnitude more contiguous than previous wheat assemblies. Kariega shows durable resistance to the devastating fungal stripe rust disease1. We identified the race-specific disease resistance gene Yr27, which encodes an intracellular immune receptor, to be a major contributor to this resistance. Yr27 is allelic to the leaf rust resistance gene Lr13; the Yr27 and Lr13 proteins show 97% sequence identity2,3. Our results demonstrate the feasibility of generating chromosome-scale wheat assemblies to clone genes, and exemplify that highly similar alleles of a single-copy gene can confer resistance to different pathogens, which might provide a basis for engineering Yr27 alleles with multiple recognition specificities in the future.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Pan , Clonación Molecular , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
7.
Nat Commun ; 12(1): 3378, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099713

RESUMEN

The re-emergence of stem rust on wheat in Europe and Africa is reinforcing the ongoing need for durable resistance gene deployment. Here, we isolate from wheat, Sr26 and Sr61, with both genes independently introduced as alien chromosome introgressions from tall wheat grass (Thinopyrum ponticum). Mutational genomics and targeted exome capture identify Sr26 and Sr61 as separate single genes that encode unrelated (34.8%) nucleotide binding site leucine rich repeat proteins. Sr26 and Sr61 are each validated by transgenic complementation using endogenous and/or heterologous promoter sequences. Sr61 orthologs are absent from current Thinopyrum elongatum and wheat pan genome sequences, contrasting with Sr26 where homologues are present. Using gene-specific markers, we validate the presence of both genes on a single recombinant alien segment developed in wheat. The co-location of these genes on a small non-recombinogenic segment simplifies their deployment as a gene stack and potentially enhances their resistance durability.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas NLR/genética , Plantas Modificadas Genéticamente/microbiología , Puccinia/patogenicidad , Triticum/microbiología , Cromosomas de las Plantas/genética , Genes de Plantas , Ingeniería Genética , Marcadores Genéticos , Fitomejoramiento/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Tallos de la Planta/microbiología , Plantas Modificadas Genéticamente/genética , Puccinia/aislamiento & purificación , Triticum/genética
8.
Theor Appl Genet ; 134(5): 1587-1599, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33677639

RESUMEN

KEY MESSAGE: A novel Ug99-resistant wheat-Thinopyrum ponticum translocation line was produced, its chromosomal composition was analyzed and specific markers were developed. Stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn (Pgt) has seriously threatened global wheat production since Ug99 race TTKSK was first detected in Uganda in 1998. Thinopyrum ponticum is near immune to Ug99 races and may be useful for enhancing wheat disease resistance. Therefore, developing new wheat-Th. ponticum translocation lines that are resistant to Ug99 is crucial. In this study, a novel wheat-Th. ponticum translocation line, WTT34, was produced. Seedling and field evaluation revealed that WTT34 is resistant to Ug99 race PTKST. The resistance was derived from the alien parent Th. ponticum. Screening WTT34 with markers linked to Sr24, Sr25, Sr26, Sr43, and SrB resulted in the amplification of different DNA fragments from Th. ponticum, implying WTT34 carries at least one novel stem rust resistance gene. Genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization (mc-FISH), and multi-color GISH (mc-GISH) analyses indicated that WTT34 carries a T5DS·5DL-Th translocation, which was consistent with wheat660K single-nucleotide polymorphism (SNP) array results. The SNP array also uncovered a deletion event in the terminal region of chromosome 1D. Additionally, the homeology between alien segments and the wheat chromosomes 2A and 5D was confirmed. Furthermore, 51 PCR-based markers derived from the alien segments of WTT34 were developed based on specific-locus amplified fragment sequencing (SLAF-seq). These markers may enable wheat breeders to rapidly trace Th. ponticum chromosomal segments carrying Ug99 resistance gene(s).


Asunto(s)
Basidiomycota/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Enfermedades de las Plantas/genética , Translocación Genética , Triticum/genética , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/inmunología , Genoma de Planta , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/microbiología
9.
Plant Dis ; 105(9): 2445-2452, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33529064

RESUMEN

In contrast to many other countries, the virulence and genetic diversity of the South African Puccinia triticina population before 1980 is unknown, because of the absence of regular and systematic race analysis data and viable rust cultures. Herbarium specimens housed at the National Collection of Fungi, Biosystematics Unit, Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa (SA), provided the opportunity to investigate the genetic development of the population using isolates collected between 1906 and 2010. Five subpopulations that survived between 21 and 82 years in the field were found. While three of these could represent the original races that entered SA during European settlement, two appear to be recent exotic introductions into SA, most probably from other African countries. The demise of the three oldest subpopulations might be from the release of resistant wheat cultivars. The population is clonal, where new virulence develops through single step mutations and selection for virulence. Although a possible case of somatic hybridization was found, sexual reproduction appears to be absent in SA. This study confirmed the importance of annual surveys in SA and its neighboring countries for the timely detection of new virulent races that could threaten wheat production in SA.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Basidiomycota/genética , Puccinia , Sudáfrica , Triticum
10.
Plant Dis ; 105(5): 1482-1489, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33074075

RESUMEN

Sunflower (Helianthus annuus L.) is the third largest grain crop by area planted in South Africa (SA). The annual yield is negatively affected by sunflower rust caused by Puccinia helianthi Schw. (Phe). Four Phe races were described in SA in the middle 1990s, but since then, no new race descriptions have been conducted. This has resulted in an information gap on the current Phe population, making it difficult to explain increased disease incidence and loss of resistance in previously resistant hybrids. To address this, 114 Phe field isolates along with 23 historic isolates were phenotyped using the international set of 11 sunflower differentials containing the R1, R2/R10, R3, R4a, R4b, R4c, R4d, R5, Pu6, and Radv resistance genes. Three new Phe races were identified, bringing the total number of South African races recorded to seven. No avirulence was detected attributable to the R1 gene, with the R4d and Radv genes remaining effective. Four main genetic lineages were detected with no obvious correlation between phenotype and genotype. The detection of three genetic lineages consisting exclusively of field isolates collected post-2006 suggested the possible recent entry of exotic introductions into SA. This, combined with the fact that one lineage consisted exclusively of the most virulent race Phe7721, confirmed a clear shift in the Phe population that could explain the increased virulence and occurrence of the disease in SA.


Asunto(s)
Enfermedades de las Plantas , Puccinia , Ligamiento Genético , Marcadores Genéticos , Genotipo , Fenotipo , Sudáfrica
12.
Plant Dis ; 103(9): 2337-2344, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31306087

RESUMEN

Puccinia graminis f. sp. tritici race TTKSF+ was collected from the South African wheat cultivar 'Matlabas' in 2010. F2 and F3 populations derived from a Matlabas × Line 37-07 cross segregated for a single resistance gene to race TTKSF that is avirulent to Matlabas. In screening genomic DNA bulks of susceptible or resistant F2 plants with simple sequence repeat (SSR) markers, three chromosome arm 2BS markers and one multilocus marker amplified alleles present only in the resistant bulks and Matlabas. Additional 2B-specific SSR markers, incorporating markers spanning regions containing Sr9h, SrWLR, Sr28, and Sr47, were screened in the parental lines and mapped in the F2 population. Linkage and QTL mapping showed that the gene is located between Xbarc160 in the centromeric region and Xgwm47 on the long arm of chromosome 2B. When 2B-specific SNP markers were mapped, the area of interest was delimited to a 15.3 cM region on chromosome arm 2BL, with XIWA543-HRM and Xgwm47 as flanking loci. Matlabas, Webster, and related Sr9h lines all produced a similar, low infection type to race TTKSF, but were susceptible to race TTKSF+. Phenotypic data and allelic studies suggested that stem rust resistance in Matlabas was derived from an Sr9h source.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Triticum , Resistencia a la Enfermedad/genética , Genotipo , Triticum/genética , Triticum/microbiología
13.
Front Plant Sci ; 10: 639, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156688

RESUMEN

Optimized inoculation procedures are an important consideration in achieving repeatable plant infection when working with biotrophic rust fungi. Several plant pathology laboratories specializing in rust research employ a system where the collection and application of fungal spores are accomplished using an exchangeable gelatin capsule. Urediniospores are collected from erumpent pustules on plant surfaces into a capsule fitted to a cyclone collector controlled by a vacuum pump. By adding light mineral oil to the same capsule, the spore suspension is then sprayed onto plants by means of a dedicated atomizer (inoculator) connected to an air pressure source. Although devices are not commercially available, modern day technologies provide an opportunity to efficiently design and manufacture collectors and inoculators. Using a process called Additive Manufacturing (AM), also known as "3D printing," the bodies of a collector and inoculator were digitally designed and then laser-sintered in nylon. Depending on availability, copper or aluminum tubes were fitted to the bodies of both devices afterward to either facilitate directed collection of spores from rust pustules on plant surfaces or act as a siphon tube to deliver the spore suspension contained in the capsule. No statistical differences were found between AM and metal inoculators for spray delivery time or spore deposition per unit area. In replicated collection and inoculation tests of wheat seedlings with urediniospore bulks or single pustule collections of Puccinia triticina and P. graminis f. sp. tritici, the causal organisms of leaf rust and stem rust, consistent and satisfactory infection levels were achieved. Immersing used devices in acetone for 60 s followed by a 2 h heat treatment at 75°C produced no contaminant infection in follow-up tests.

14.
Plant Dis ; 103(6): 1228-1233, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30908125

RESUMEN

Depending on the pathogenicity of the stripe rust fungus Puccinia striiformis f. sp. tritici, the nature of resistance in the wheat host plant, and the environment, a broad range of disease phenotypes can be expressed. Therefore, the phenotyping of partial adult plant stripe rust resistance requires reliable and repeatable procedures, especially under controlled conditions. In this study, the development of a flag leaf point inoculation method, which resulted in a 100% initial infection rate, is reported. Flag leaf inoculations were achieved by placing 6-mm antibiotic test paper discs, dipped into a urediniospore and water suspension and covered with water-proof plastic tape, on the adaxial side of leaves. Results from independent trials allowed for the statistical comparison of stripe rust lesion expansion rate in wheat entries that differ in resistance. The technique is inexpensive, reliable, and applicable to routine screening for adult plant response type, quantitative comparison of stripe rust progress, environmental influences, and pathogenicity of different isolates.


Asunto(s)
Agricultura , Basidiomycota , Resistencia a la Enfermedad , Triticum , Agricultura/métodos , Basidiomycota/fisiología , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...