Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Mar Pollut Bull ; 207: 116852, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213883

RESUMEN

The underwater sound distribution generated by natural sources, shipping and trawling activities has been computed by the Quonops© modelling webservice for the Northern Adriatic Sea (NAS) during 2020, a year characterized by the COVID-19 lockdown restrictions. Modelling has been calibrated by using a year-long time series of field measurements covering the domain of interest. Sound levels (50th percentile) ranged between 75 and 90 dB re 1µPa for all the considered frequencies (63 Hz, 125 Hz, 250 Hz third octave bands). Noisier NAS areas match with the shipping lanes and the distribution of trawling activity. Pressure sound indices based on masking effect were computed for two Ecologically/Biologically Significant Marine Areas (EBSA) located in the NAS. Results indicated a significant contribution of vessel and fishery-generated noise to the local soundscape and provide a basis for addressing NAS underwater noise pollution, with special reference to the Marine Spatial Planning approach.


Asunto(s)
Navíos , COVID-19 , Sonido , Monitoreo del Ambiente/métodos , Explotaciones Pesqueras , Océanos y Mares
3.
Sci Rep ; 13(1): 22799, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38129457

RESUMEN

Anthropogenic underwater noise is an emergent pollutant. Despite several worldwide monitoring programs, only few data are available for the Mediterranean Sea, one of the global biodiversity hotspots. The results of the first continuous acoustic programme run at a transnational basin scale in the Mediterranean Sea are here presented. Recordings were done from March 2020 to June 2021, including the COVID-19 lockdown, at nine stations in the Northern Adriatic Sea. Spatial-temporal variations of the underwater sound are described, having one third octave band sound pressure levels (SPLs) from 10 Hz to 20 kHz as metrics. Higher and more variable SPLs, mainly related to vessel traffic, were found close to harbours, whereas Natura 2000 stations experienced lower SPLs. Lower values were recorded during the lockdown in five stations. Median yearly SPLs ranged between 64 and 95 as well as 70 and 100 dB re 1 µPa for 63 and 125 Hz bands, respectively. These values are comparable with those previously found in busy shallow EU basins but higher levels are expected during a business-as-usual period. This is a baseline assessment for a highly impacted and environmental valuable area, that needs to be managed in a new sustainable blue growth strategy.

5.
Sci Data ; 10(1): 137, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922529

RESUMEN

The protection of marine habitats from human-generated underwater noise is an emerging challenge. Baseline information on sound levels, however, is poorly available, especially in the Mediterranean Sea. To bridge this knowledge gap, the SOUNDSCAPE project ran a basin-scale, cross-national, long-term underwater monitoring in the Northern Adriatic Sea. A network of nine monitoring stations, characterized by different natural conditions and anthropogenic pressures, ensured acoustic data collection from March 2020 to June 2021, including the full lockdown period related to the COVID-19 pandemic. Calibrated stationary recorders featured with an omnidirectional Neptune Sonar D60 Hydrophone recorded continuously 24 h a day (48 kHz sampling rate, 16 bit resolution). Data were analysed to Sound Pressure Levels (SPLs) with a specially developed and validated processing app. Here, we release the dataset composed of 20 and 60 seconds averaged SPLs (one-third octave, base 10) output files and a Python script to postprocess them. This dataset represents a benchmark for scientists and policymakers addressing the risk of noise impacts on marine fauna in the Mediterranean Sea and worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA