Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Imaging Behav ; 18(1): 141-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955809

RESUMEN

To examine the corpus callosum's (CC) integrity in terms of fractional anisotropy (FA) and how it affects resting-state hemispheric connectivity (rs-IHC) and cognitive function in healthy individuals. Sixty-eight healthy individuals were recruited for the study. The global FA (gFA) and FA values of each CC tract (forceps minor, body, tapetum, and forceps major) were evaluated using diffusion-weighted imaging (DWI) sequences. The homotopic functional connectivity technique was used to quantify the effects of FA in the CC tracts on bilateral functional connectivity, including the confounding effect of gFA. Brain regions with higher or lower rs-IHC were identified using the threshold-free cluster enhancement family-wise error-corrected p-value of 0.05. The null hypothesis was rejected if the p-value was ≤ 0.05 for the nonparametric partial correlation technique. Several clusters of increased rs-IHC were identified in relation to the FA of individual CC tracts, each with a unique topographic distribution and extension. Only forceps minor FA values correlated with cognitive scores. The integrity of CC influences rs-IHC differently in healthy subjects. Specifically, forceps minor anisotropy impacts rs-IHC and cognition more than other CC tracts do.


Asunto(s)
Cuerpo Calloso , Imagen de Difusión Tensora , Humanos , Cuerpo Calloso/diagnóstico por imagen , Voluntarios Sanos , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética , Cognición , Anisotropía
2.
mBio ; 14(4): e0140323, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37493633

RESUMEN

Transporters of the resistance-nodulation-cell division (RND) superfamily of proteins are the dominant multidrug efflux power of Gram-negative bacteria. The major RND efflux pump of Pseudomonas aeruginosa is MexAB-OprM, in which the inner membrane transporter MexB is responsible for the recognition and binding of compounds. The high importance of this pump in clinical antibiotic resistance made it a subject of intense investigations and a promising target for the discovery of efflux pump inhibitors. This study is focused on a series of peptidomimetic compounds developed as effective inhibitors of MexAB-OprM. We performed multi-copy molecular dynamics simulations, machine-learning (ML) analyses, and site-directed mutagenesis of MexB to investigate interactions of MexB with representatives of efflux avoiders, substrates, and inhibitors. The analysis of both direct and water-mediated protein-ligand interactions revealed characteristic patterns for each class, highlighting significant differences between them. We found that efflux avoiders poorly interact with the access binding site of MexB, and inhibition engages amino acid residues that are not directly involved in binding and transport of substrates. In agreement, machine-learning models selected different residues predictive of MexB substrates and inhibitors. The differences in interactions were further validated by site-directed mutagenesis. We conclude that the substrate translocation and inhibition pathways of MexB split at the interface (between the main putative binding sites) and at the deep binding pocket and that interactions outside of the hydrophobic patch contribute to the inhibition of MexB. This molecular-level information could help in the rational design of new inhibitors and antibiotics less susceptible to the efflux mechanism. IMPORTANCE Multidrug transporters recognize and expel from cells a broad range of ligands including their own inhibitors. The difference between the substrate translocation and inhibition routes remains unclear. In this study, machine learning and computational and experimental approaches were used to understand dynamics of MexB interactions with its ligands. Our results show that some ligands engage a certain combination of polar and charged residues in MexB binding sites to be effectively expelled into the exit funnel, whereas others engage aromatic and hydrophobic residues that slow down or hinder the next step in the transporter cycle. These findings suggest that all MexB ligands fit into this substrate-inhibitor spectrum depending on their physico-chemical structures and properties.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Ligandos , Pruebas de Sensibilidad Microbiana , Proteínas de Transporte de Membrana/metabolismo
3.
J Chem Inf Model ; 63(15): 4924-4933, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37466559

RESUMEN

The development of drugs targeting somatostatin receptor 2 (SSTR2), generally overexpressed in neuroendocrine tumors, is focus of intense research. A few molecules in conjugation with radionuclides are in clinical use for both diagnostic and therapeutic purposes. These radiopharmaceuticals are composed of a somatostatin analogue biovector conjugated to a chelator moiety bearing the radionuclide. To date, despite valuable efforts, a detailed molecular-level description of the interaction of radiopharmaceuticals in complex with SSTR2 has not yet been accomplished. Therefore, in this work, we carefully analyzed the key dynamical features and detailed molecular interactions of SSTR2 in complex with six radiopharmaceutical compounds selected among the few already in use (64Cu/68Ga-DOTATATE, 68Ga-DOTATOC, 64Cu-SARTATE) and some in clinical development (68Ga-DOTANOC, 64Cu-TETATATE). Through molecular dynamics simulations and exploiting recently available structures of SSTR2, we explored the influence of the different portions of the compounds (peptide, radionuclide, and chelator) in the interaction with the receptor. We identified the most stable binding modes and found distinct interaction patterns characterizing the six compounds. We thus unveiled detailed molecular interactions crucial for the recognition of this class of radiopharmaceuticals. The microscopically well-founded analysis presented in this study provides guidelines for the design of new potent ligands targeting SSTR2.


Asunto(s)
Radiofármacos , Receptores de Somatostatina , Radiofármacos/química , Simulación de Dinámica Molecular , Receptores de Somatostatina/antagonistas & inhibidores , Receptores de Somatostatina/química , Animales , Ratones , Diseño de Fármacos , Terapia Molecular Dirigida
4.
Mater Horiz ; 10(9): 3559-3568, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37303227

RESUMEN

A tightly confined 2D electron gas with good carrier mobility and large spin-polarization is an essential ingredient for the implementation of spin-caloritronic conversion device technology. Here we give evidence that the SrTiO3/EuTiO3/LaAlO3 heterostructure is a prototype material for this purpose. The presence of Eu induces strong spin-polarization in the 2D electron gas spontaneously formed at the interface and ferromagnetic order at low temperature. Furthermore, tight 2D confinement and spin-polarization can be highly enhanced upon charge depletion, in turn generating huge thermopower associated with the phonon-drag mechanism. Most importantly, the remarkable difference in the population of the two spin channels results in the giant spin-polarized Seebeck effect and in turn, giant spin voltages of mV K-1 order at the two ends of an applied thermal gradient. Our results represent a strong assessment to the capabilities of this interface for low-temperature spin-caloritronic applications.

5.
Sci Rep ; 13(1): 4768, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959237

RESUMEN

The cyclic peptide hormone somatostatin regulates physiological processes involved in growth and metabolism, through its binding to G-protein coupled somatostatin receptors. The isoform 2 (SSTR2) is of particular relevance for the therapy of neuroendocrine tumours for which different analogues to somatostatin are currently in clinical use. We present an extensive and systematic computational study on the dynamics of SSTR2 in three different states: active agonist-bound, inactive antagonist-bound and apo inactive. We exploited the recent burst of SSTR2 experimental structures to perform µs-long multi-copy molecular dynamics simulations to sample conformational changes of the receptor and rationalize its binding to different ligands (the agonists somatostatin and octreotide, and the antagonist CYN154806). Our findings suggest that the apo form is more flexible compared to the holo ones, and confirm that the extracellular loop 2 closes upon the agonist octreotide but not upon the antagonist CYN154806. Based on interaction fingerprint analyses and free energy calculations, we found that all peptides similarly interact with residues buried into the binding pocket. Conversely, specific patterns of interactions are found with residues located in the external portion of the pocket, at the basis of the extracellular loops, particularly distinguishing the agonists from the antagonist. This study will help in the design of new somatostatin-based compounds for theranostics of neuroendocrine tumours.


Asunto(s)
Tumores Neuroendocrinos , Receptores de Somatostatina , Humanos , Receptores de Somatostatina/metabolismo , Octreótido/uso terapéutico , Somatostatina/metabolismo , Proteínas de Unión al GTP/metabolismo , Ligandos , Tumores Neuroendocrinos/tratamiento farmacológico
6.
Front Pharmacol ; 13: 1021916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438787

RESUMEN

The secondary transporters of the resistance-nodulation-cell division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria like Pseudomonas aeruginosa. Among these RND transporters, MexB, MexF, and MexY, with partly overlapping specificities, have been implicated in pathogenicity. Only the structure of the former has been resolved experimentally, which together with the lack of data about the functional dynamics of the full set of transporters, limited a systematic investigation of the molecular determinants defining their peculiar and shared features. In a previous work (Ramaswamy et al., Front. Microbiol., 2018, 9, 1144), we compared at an atomistic level the two main putative recognition sites (named access and deep binding pockets) of MexB and MexY. In this work, we expand the comparison by performing extended molecular dynamics (MD) simulations of these transporters and the pathologically relevant transporter MexF. We employed a more realistic model of the inner phospholipid membrane of P. aeruginosa and more accurate force-fields. To elucidate structure/dynamics-activity relationships we performed physico-chemical analyses and mapped the binding propensities of several organic probes on all transporters. Our data revealed the presence, also in MexF, of a few multifunctional sites at locations equivalent to the access and deep binding pockets detected in MexB. Furthermore, we report for the first time about the multidrug binding abilities of two out of five gates of the channels deputed to peripheral (early) recognition of substrates. Overall, our findings help to define a common "recognition topology" characterizing Mex transporters, which can be exploited to optimize transport and inhibition propensities of antimicrobial compounds.

7.
Phys Chem Chem Phys ; 24(27): 16566-16575, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35766032

RESUMEN

The drug/proton antiporter MexB is the engine of the major efflux pump MexAB-OprM in Pseudomonas aeruginosa. This protein is known to transport a large variety of compounds, including antibiotics, thus conferring a multi-drug resistance phenotype. Due to the difficulty of producing co-crystals, only two X-ray structures of MexB in a complex with ligands are available to date, and mechanistic aspects are largely hypothesized based on the body of data collected for the homologous protein AcrB of Escherichia coli. In particular, a recent study (Ornik-Cha, Wilhelm, Kobylka et al., Nat. Commun., 2021, 12, 6919) reported a co-crystal structure of AcrB in a complex with levofloxacin, an antibiotic belonging to the important class of (fluoro)-quinolones. In this work, we performed a systematic ensemble docking campaign coupled to the cluster analysis and molecular-mechanics optimization of docking poses to study the interaction between 36 quinolone antibiotics and MexB. We additionally investigated surface complementarity between each molecule and the transporter and thoroughly assessed the computational protocol adopted against the known experimental data. Our study reveals different binding preferences of the investigated compounds towards the sub-sites of the large deep binding pocket of MexB, supporting the hypothesis that MexB substrates oscillate between different binding modes with similar affinity. Interestingly, small changes in the molecular structure translate into significant differences in MexB-quinolone interactions. All the predicted binding modes are available for download and visualization at the following link: https://www.dsf.unica.it/dock/mexb/quinolones.


Asunto(s)
Proteínas de Escherichia coli , Quinolonas , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Pseudomonas aeruginosa/metabolismo
8.
Sci Data ; 9(1): 148, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365662

RESUMEN

Antibiotic resistance is a major threat to public health. The development of chemo-informatic tools to guide medicinal chemistry campaigns in the efficint design of antibacterial libraries is urgently needed. We present AB-DB, an open database of all-atom force-field parameters, molecular dynamics trajectories, quantum-mechanical properties, and curated physico-chemical descriptors of antimicrobial compounds. We considered more than 300 molecules belonging to 25 families that include the most relevant antibiotic classes in clinical use, such as ß-lactams and (fluoro)quinolones, as well as inhibitors of key bacterial proteins. We provide traditional descriptors together with properties obtained with Density Functional Theory calculations. Noteworthy, AB-DB contains less conventional descriptors extracted from µs-long molecular dynamics simulations in explicit solvent. In addition, for each compound we make available force-field parameters for the major micro-species at physiological pH. With the rise of multi-drug-resistant pathogens and the consequent need for novel antibiotics, inhibitors, and drug re-purposing strategies, curated databases containing reliable and not straightforward properties facilitate the integration of data mining and statistics into the discovery of new antimicrobials.


Asunto(s)
Antiinfecciosos , Simulación de Dinámica Molecular
9.
Front Mol Biosci ; 9: 839249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309507

RESUMEN

Voltage-gated potassium channels of the Kv7.x family are involved in a plethora of biological processes across many tissues in animals, and their misfunctioning could lead to several pathologies ranging from diseases caused by neuronal hyperexcitability, such as epilepsy, or traumatic injuries and painful diabetic neuropathy to autoimmune disorders. Among the members of this family, the Kv7.2 channel can form hetero-tetramers together with Kv7.3, forming the so-called M-channels, which are primary regulators of intrinsic electrical properties of neurons and of their responsiveness to synaptic inputs. Here, prompted by the similarity between the M-current and that in Kv7.2 alone, we perform a computational-based characterization of this channel in its different conformational states and in complex with the modulator retigabine. After validation of the structural models of the channel by comparison with experimental data, we investigate the effect of retigabine binding on the two extreme states of Kv7.2 (resting-closed and activated-open). Our results suggest that binding, so far structurally characterized only in the intermediate activated-closed state, is possible also in the other two functional states. Moreover, we show that some effects of this binding, such as increased flexibility of voltage sensing domains and propensity of the pore for open conformations, are virtually independent on the conformational state of the protein. Overall, our results provide new structural and dynamic insights into the functioning and the modulation of Kv7.2 and related channels.

10.
Molecules ; 25(23)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291474

RESUMEN

Modern medicine relies upon antibiotics, but we have arrived to the point where our inability to come up with new effective molecules against resistant pathogens, together with the declining private investment, is resulting in the number of untreatable infections increasing worldwide at worrying pace. Among other pathogens, widely recognized institutions have indicated Gram-negative bacteria as particularly challenging, due to the presence of the outer membrane. The very first step in the action of every antibiotic or adjuvant is the permeation through this membrane, with small hydrophilic drugs usually crossing through protein channels. Thus, a detailed understanding of their properties at a molecular level is crucial. By making use of Molecular Dynamics simulations, we compared the two main porins of four members of the Enterobacteriaceae family, and, in this paper, we show their shared geometrical and electrostatic characteristics. Then, we used metadynamics simulations to reconstruct the free energy for permeation of selected diazobicyclooctans through OmpF. We demonstrate how porins features are coupled to those of the translocating species, modulating their passive permeation. In particular, we show that the minimal projection area of a molecule is a better descriptor than its molecular mass or the volume. Together with the magnitude and orientation of the electric dipole moment, these are the crucial parameters to gain an efficient compensation between the entropic and enthalpic contributions to the free energy barrier required for permeation. Our results confirm the possibility to predict the permeability of molecules through porins by using a few molecular parameters and bolster the general model according to which the free energy increase is mostly due to the decrease of conformational entropy, and this can be compensated by a favorable alignment of the electric dipole with respect to the channel intrinsic electric field.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Bacterias Gramnegativas/metabolismo , Porinas/metabolismo , Inhibidores de beta-Lactamasas/metabolismo , Antibacterianos/metabolismo , Enterobacteriaceae/metabolismo , Simulación de Dinámica Molecular , Electricidad Estática
11.
Phys Chem Chem Phys ; 22(27): 15664-15674, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32618303

RESUMEN

In the last decade two-pore intracellular channels (TPCs) attracted the interest of researchers, still some key questions remain open. Their importance for vacuolar (plants) and endo-lysosomal (animals) function highlights them as a very attractive system to study, both theoretically and experimentally. Indicated as key players in the trafficking of the cell, today they are considered a new potential target for avoiding virus infections, including those from coronaviruses. A particular boost for theoretical examinations has been made with recent high-resolution X-ray and cryo-EM structures. These findings have opened the way for efficient and precise computational studies at the atomistic level. Here we report a set of multiscale-calculations performed on the mTPC1, a ligand- and voltage-gated sodium selective channel. The molecular dynamics and enhanced molecular dynamics simulations were used for a thorough analysis of the mammalian TPC1 behaviour in the presence and absence of the ligand molecule, with a special accent on the supposed bottleneck, the hydrophobic gate. Moreover, from the reconstructed free energy obtained from enhanced simulations, we have calculated the macroscopic conductance of sodium ions through the mTPC1, which we compared with measured single-channel conductance values. The hydrophobic gate works as a steric barrier and the key parameters are its flexibility and the dimension of the sodium first hydration shell.


Asunto(s)
Canales de Calcio/química , Simulación del Acoplamiento Molecular , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Ligandos , Ratones
12.
ACS Omega ; 5(27): 16654-16663, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32685832

RESUMEN

We report a comparative computational investigation on the first six members of linear poly-C,Si,Ge-acenes (X4n+2H2n+4, X = C,Si,Ge; n = 1, 2, 3, 4, 5, 6). We performed density functional theory (DFT) and time-dependent DFT calculations to compare morphological, electronic, and optical properties. While C-acenes are planar, Si- and Ge-acenes assume a buckled configuration. Electronic properties show similar trends as a function of size for all families. In particular, differently from C-based compounds, in the case of both Si- and Ge-acenes, the excitation energies of the strongest low-lying electronic transition (ß peaks) span the visible region of the spectrum, demonstrating their size tunability. For all families, we assessed the plasmonic character of this transition and found a linear relationship for the wavelength-dependence of the ß peaks as a function of the number of rings. A similar slope of about 56 nm is observed for Si- and Ge-acenes, although the peak positions of the former are located at lower wavelengths. Outcomes of this study are compared with existing theoretical results for 2D lattices and nanoribbons, and experiments where available.

13.
ACS Omega ; 5(22): 13268-13277, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32548513

RESUMEN

We report a systematic investigation on the electronic and optical properties of the smallest stable clusters of alkaline-earth metal fluorides, namely, MgF2, CaF2, SrF2, and BaF2. For these clusters, we perform density functional theory (DFT) and time-dependent DFT (TDDFT) calculations with a localized Gaussian basis set. For each molecule ((MF2) n , n = 1-3, M = Mg, Ca, Sr, Ba), we determine a series of molecular properties, namely, ground-state energies, fragmentation energies, electron affinities, ionization energies, fundamental energy gaps, optical absorption spectra, and exciton binding energies. We compare electronic and optical properties between clusters of different sizes with the same metal atom and between clusters of the same size with different metal atoms. From this analysis, it turns out that MgF2 clusters have distinguished ground-state and excited-state properties with respect to the other fluoride molecules. Sizeable reductions of the optical onset energies and a consistent increase of excitonic effects are observed for all clusters under study with respect to the corresponding bulk systems. Possible consequences of the present results are discussed with respect to applied and fundamental research.

14.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013182

RESUMEN

The drug/proton antiporter AcrB, engine of the major efflux pump AcrAB(Z)-TolC of Escherichia coli and other bacteria, is characterized by its impressive ability to transport chemically diverse compounds, conferring a multi-drug resistance (MDR) phenotype. Although hundreds of small molecules are known to be AcrB substrates, only a few co-crystal structures are available to date. Computational methods have been therefore intensively employed to provide structural and dynamical fingerprints related to transport and inhibition of AcrB. In this work, we performed a systematic computational investigation to study the interaction between representative carbapenem antibiotics and AcrB. We focused on the interaction of carbapenems with the so-called distal pocket, a region known for its importance in binding inhibitors and substrates of AcrB. Our findings reveal how the different physico-chemical nature of these antibiotics is reflected on their binding preference for AcrB. The molecular-level information provided here could help design new antibiotics less susceptible to the efflux mechanism.


Asunto(s)
Antibacterianos/metabolismo , Carbapenémicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Antibacterianos/química , Sitios de Unión , Carbapenémicos/química , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Unión Proteica , Termodinámica
15.
Biochim Biophys Acta Biomembr ; 1861(7): 1397-1408, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31075229

RESUMEN

The drug/proton antiporter AcrB, which is part of the major efflux pump AcrABZ-TolC in Escherichia coli, is the paradigm transporter of the resistance-nodulation-cell division (RND) superfamily. Despite the impressive ability of AcrB to transport many chemically unrelated compounds, only a few of these ligands have been co-crystallized with the protein. Therefore, the molecular features that distinguish good substrates of the pump from poor ones have remained poorly understood to date. In this work, a thorough in silico protocol was employed to study the interactions of a series of congeneric compounds with AcrB to examine how subtle chemical differences affect the recognition and transport of substrates by this protein. Our analysis allowed us to discriminate among different compounds, mainly in terms of specific interactions with diverse sub-sites within the large distal pocket of AcrB. Our findings could provide valuable information for the design of new antibiotics that can evade the antimicrobial resistance mediated by efflux pump machinery.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Especificidad por Sustrato
16.
J Phys Chem B ; 123(22): 4625-4635, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31070373

RESUMEN

The drug/proton antiporter AcrB, part of the major efflux pump AcrABZ-TolC in Escherichia coli, is characterized by its impressive ability to transport chemically diverse compounds, conferring a multidrug resistance phenotype. However, the molecular features differentiating between good and poor substrates of the pump have yet to be identified. In this work, we combined molecular docking with molecular dynamics simulations to study the interactions between AcrB and two representative cephalosporins, cefepime and ceftazidime (a good and poor substrate of AcrB, respectively). Our analysis revealed different binding preferences of the two compounds toward the subsites of the large deep binding pocket of AcrB. Cefepime, although less hydrophobic than ceftazidime, showed a higher affinity than ceftazidime for the so-called hydrophobic trap, a region known for binding inhibitors and substrates. This supports the hypothesis that surface complementarity between the molecule and AcrB, more than the intrinsic hydrophobicity of the antibiotic, is a feature required for the interaction within this region. Oppositely, the preference of ceftazidime for binding outside the hydrophobic trap might not be optimal for triggering allosteric conformational changes needed to the transporter to accomplish its function. Altogether, our findings could provide valuable information for the design of new antibiotics less susceptible to the efflux mechanism.


Asunto(s)
Cefalosporinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica
17.
Molecules ; 20(8): 13997-4021, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26247924

RESUMEN

We present an on-line database of all-atom force-field parameters and molecular properties of compounds with antimicrobial activity (mostly antibiotics and some beta-lactamase inhibitors). For each compound, we provide the General Amber Force Field parameters for the major species at physiological pH, together with an analysis of properties of interest as extracted from µs-long molecular dynamics simulations in explicit water solution. The properties include number and population of structural clusters, molecular flexibility, hydrophobic and hydrophilic molecular surfaces, the statistics of intraand inter-molecular H-bonds, as well as structural and dynamical properties of solvent molecules within first and second solvation shells. In addition, the database contains several key molecular parameters, such as energy of the frontier molecular orbitals, vibrational properties, rotational constants, atomic partial charges and electric dipole moment, computed by Density Functional Theory. The present database (to our knowledge the first extensive one including dynamical properties) is part of a wider project aiming to build-up a database containing structural, physico-chemical and dynamical properties of medicinal compounds using different force-field parameters with increasing level of complexity and reliability. The database is freely accessible at http://www.dsf.unica.it/translocation/db/.


Asunto(s)
Antiinfecciosos/farmacología , Bases de Datos de Compuestos Químicos , Simulación de Dinámica Molecular , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...