Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431483

RESUMEN

The hexanucleotide G4C2 repeat expansion in the first intron of the C9ORF72 gene explains the majority of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) cases. Numerous studies have indicated the toxicity of dipeptide repeats (DPRs) which are produced via repeat-associated non-AUG (RAN) translation from the repeat expansion and accumulate in the brain of C9FTD/ALS patients. Mouse models expressing the human C9ORF72 repeat and/or DPRs show variable pathological, functional, and behavioral characteristics of FTD and ALS. Here, we report a new Tet-on inducible mouse model that expresses 36x pure G4C2 repeats with 100bp upstream and downstream human flanking regions. Brain specific expression causes the formation of sporadic sense DPRs aggregates upon 6 months dox induction but no apparent neurodegeneration. Expression in the rest of the body evokes abundant sense DPRs in multiple organs, leading to weight loss, neuromuscular junction disruption, myopathy, and a locomotor phenotype within the time frame of four weeks. We did not observe any RNA foci or pTDP-43 pathology. Accumulation of DPRs and the myopathy phenotype could be prevented when 36x G4C2 repeat expression was stopped after 1 week. After 2 weeks of expression, the phenotype could not be reversed, even though DPR levels were reduced. In conclusion, expression of 36x pure G4C2 repeats including 100bp human flanking regions is sufficient for RAN translation of sense DPRs and evokes a functional locomotor phenotype. Our inducible mouse model suggests early diagnosis and treatment are important for C9FTD/ALS patients.

2.
Genes Brain Behav ; 11(3): 325-31, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22257369

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability. Patients with FXS do not only suffer from cognitive problems, but also from abnormalities/deficits in procedural memory formation. It has been proposed that a lack of fragile X mental retardation protein (FMRP) leads to altered long-term plasticity by deregulation of various translational processes at the synapses, and that part of these impairments might be rescued by the inhibition of type I metabotropic glutamate receptors (mGluRs). We recently developed the Erasmus Ladder, which allows us to test, without any invasive approaches, simultaneously, both procedural memory formation and avoidance behavior during unperturbed and perturbed locomotion in mice. Here, we investigated the impact of a potent and selective mGluR5 inhibitor (Fenobam) on the behavior of Fmr1 KO mice during the Erasmus Ladder task. Fmr1 KO mice showed deficits in associative motor learning as well as avoidance behavior, both of which were rescued by intraperitoneal administration of Fenobam. While the Fmr1 KO mice did benefit from the treatment, control littermates suffered from a significant negative side effect in that their motor learning skills, but not their avoidance behavior, were significantly affected. On the basis of these studies in the FXS animal model, it may be worthwhile to investigate the effects of mGluR inhibitors on both the cognitive functions and procedural skills in FXS patients. However, the use of mGluR inhibitors appears to be strongly contraindicated in healthy controls or non-FXS patients with intellectual disability.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores/toxicidad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Trastornos de la Memoria/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Animales , Reacción de Prevención/fisiología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/psicología , Imidazoles/toxicidad , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/fisiología
3.
Neuroscience ; 162(3): 612-23, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19302832

RESUMEN

Elimination of redundant synapses and strengthening of the surviving ones are crucial steps in the development of the nervous system. Both processes can be readily followed at the climbing fiber to Purkinje cell synapse in the cerebellum. Shortly after birth, around five equally strong climbing fiber synapses are established. Subsequently, one of these five synaptic connections starts to grow in size and synaptic strength, while the others degenerate and eventually disappear. Both the elimination of the redundant climbing fiber synapses and the strengthening of the surviving one depend on a combination of a genetically coded blueprint and synaptic activity. Recently, it has been shown that synaptic activity affects the synaptic strength of developing climbing fibers. Remarkably, the same pattern of paired activity of the presynaptic climbing fiber and the postsynaptic Purkinje cell resulted in strengthening of already "large" climbing fibers and weakening of already "weak" climbing fibers. In this review, we will integrate the current knowledge of synaptic plasticity of climbing fibers with that of other processes affecting climbing fiber development.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Fibras Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Sinapsis/fisiología , Animales
4.
Neuroscience ; 124(1): 161-71, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14960348

RESUMEN

Changes in subunit composition of N-methyl-D-aspartate (NMDA) receptors have been reported to be affected by visual experience and may therefore form a major aspect of neuronal plasticity in the CNS during development. In contrast, putative alterations in the expression and functioning of the inhibitory GABAA receptor around eye opening have not been well defined yet. Here we describe the timing of changes in GABAA receptor subunit expression and the related synaptic functioning in the neonatal rat visual cortex and the influence of visual experience on this process. Quantitative analysis of all GABAA receptor subunit transcripts revealed a marked alpha3 to alpha1 subunit switch, in addition to a change in alpha4 and alpha5 expression. The changes were correlated with an acceleration of the decay of spontaneous inhibitory postsynaptic currents (sIPSCs). Both changes in receptor expression and synaptic functioning were initiated well before eye opening. Moreover, dark rearing could not prevent the robust upregulation of alpha1 or the change in sIPSC kinetics, indicating that this is not dependent of sensory (visual) input. Upon eye opening a positive correlation was observed between a faster decay of the sIPSCs and an increase in sIPSC frequency, which was absent in dark-reared animals. Thus, lack of extrinsic input to the cortex does not affect overall developmental regulation of synaptic functioning of GABAA receptors. However, we cannot exclude the possibility that visual experience is involved in proper shaping of the inhibitory network of the primary visual cortex.


Asunto(s)
Receptores de GABA-A/fisiología , Corteza Visual/crecimiento & desarrollo , Corteza Visual/fisiología , Animales , Animales Recién Nacidos , Período Crítico Psicológico , Oscuridad , Ojo , Expresión Génica , Cinética , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Ratas , Ratas Wistar , Receptores de GABA-A/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA