Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 21(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827160

RESUMEN

The determination of the protein's intracellular localization is essential for understanding its biological function. Protein localization studies are mainly performed on primary and secondary vertebrate cell lines for which most protocols have been optimized. In spite of experimental difficulties, studies on invertebrate cells, including basal Metazoa, have greatly advanced. In recent years, the interest in studying human diseases from an evolutionary perspective has significantly increased. Sponges, placed at the base of the animal tree, are simple animals without true tissues and organs but with a complex genome containing many genes whose human homologs have been implicated in human diseases, including cancer. Therefore, sponges are an innovative model for elucidating the fundamental role of the proteins involved in cancer. In this study, we overexpressed human cancer-related proteins and their sponge homologs in human cancer cells, human fibroblasts, and sponge cells. We demonstrated that human and sponge MYC proteins localize in the nucleus, the RRAS2 in the plasma membrane, the membranes of the endolysosomal vesicles, and the DRG1 in the cell's cytosol. Despite the very low transfection efficiency of sponge cells, we observed an identical localization of human proteins and their sponge homologs, indicating their similar cellular functions.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Neoplasias , Poríferos , Animales , Humanos , Genoma , Evolución Biológica , Línea Celular , Transfección , Proteínas de la Membrana
2.
Cell Biosci ; 11(1): 195, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789336

RESUMEN

BACKGROUND: NME6 is a member of the nucleoside diphosphate kinase (NDPK/NME/Nm23) family which has key roles in nucleotide homeostasis, signal transduction, membrane remodeling and metastasis suppression. The well-studied NME1-NME4 proteins are hexameric and catalyze, via a phospho-histidine intermediate, the transfer of the terminal phosphate from (d)NTPs to (d)NDPs (NDP kinase) or proteins (protein histidine kinase). For the NME6, a gene/protein that emerged early in eukaryotic evolution, only scarce and partially inconsistent data are available. Here we aim to clarify and extend our knowledge on the human NME6. RESULTS: We show that NME6 is mostly expressed as a 186 amino acid protein, but that a second albeit much less abundant isoform exists. The recombinant NME6 remains monomeric, and does not assemble into homo-oligomers or hetero-oligomers with NME1-NME4. Consequently, NME6 is unable to catalyze phosphotransfer: it does not generate the phospho-histidine intermediate, and no NDPK activity can be detected. In cells, we could resolve and extend existing contradictory reports by localizing NME6 within mitochondria, largely associated with the mitochondrial inner membrane and matrix space. Overexpressing NME6 reduces ADP-stimulated mitochondrial respiration and complex III abundance, thus linking NME6 to dysfunctional oxidative phosphorylation. However, it did not alter mitochondrial membrane potential, mass, or network characteristics. Our screen for NME6 protein partners revealed its association with NME4 and OPA1, but a direct interaction was observed only with RCC1L, a protein involved in mitochondrial ribosome assembly and mitochondrial translation, and identified as essential for oxidative phosphorylation. CONCLUSIONS: NME6, RCC1L and mitoribosomes localize together at the inner membrane/matrix space where NME6, in concert with RCC1L, may be involved in regulation of the mitochondrial translation of essential oxidative phosphorylation subunits. Our findings suggest new functions for NME6, independent of the classical phosphotransfer activity associated with NME proteins.

3.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34577557

RESUMEN

Carbon quantum dots (CQDs) have recently emerged as innovative theranostic nanomaterials, enabling fast and effective diagnosis and treatment. In this study, a facile hydrothermal approach for N-doped biomass-derived CQDs preparation from Citrus clementina peel and amino acids glycine (Gly) and arginine (Arg) has been presented. The gradual increase in the N-dopant (amino acids) nitrogen content increased the quantum yield of synthesized CQDs. The prepared CQDs exhibited good biocompatibility, stability in aqueous, and high ionic strength media, similar optical properties, while differences were observed regarding the structural and chemical diversity, and biological and antioxidant activity. The antiproliferative effect of CQD@Gly against pancreatic cancer cell lines (CFPAC-1) was observed. At the same time, CQD@Arg has demonstrated the highest quantum yield and antioxidant activity by DPPH scavenging radical method of 81.39 ± 0.39% and has been further used for the ion sensing and cellular imaging of cancer cells. The obtained results have demonstrated selective response toward Fe3+ detection, with linear response ranging from 7.0 µmol dm-3 to 50.0 µmol dm-3 with R2 = 0.9931 and limit of detection (LOD) of 4.57 ± 0.27 µmol dm-3. This research could be a good example of sustainable biomass waste utilization with potential for biomedical analysis and ion sensing applications.

4.
Sci Rep ; 9(1): 12470, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462745

RESUMEN

Unlike other tumours, TP53 is rarely mutated in melanoma; however, it fails to function as a tumour suppressor. We assume that its functions might be altered through interactions with several families of proteins, including p53/p73, NME and GLI. To elucidate the potential interplay among these families we analysed the expression profiles of aforementioned genes and proteins in a panel of melanoma cell lines, metastatic melanoma specimens and healthy corresponding tissue. Using qPCR a higher level of NME1 gene expression and lower levels of Δ40p53ß, ΔNp73, GLI1, GLI2 and PTCH1 were observed in tumour samples compared to healthy tissue. Protein expression of Δ133p53α, Δ160p53α and ΔNp73α isoforms, NME1 and NME2, and N'ΔGLI1, GLI1FL, GLI2ΔN isoforms was elevated in tumour tissue, whereas ∆Np73ß was downregulated. The results in melanoma cell lines, in general, support these findings. In addition, we correlated expression profiles with clinical features and outcome. Higher Δ133p53ß and p53α mRNA and both GLI1 mRNA and GLI3R protein expression had a negative impact on the overall survival. Shorter overall survival was also connected with lower p53ß and NME1 gene expression levels. In conclusion, all examined genes may have implications in melanoma development and functional inactivity of TP53.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma/metabolismo , Nucleósido-Difosfato Quinasa/biosíntesis , Proteína Tumoral p73/biosíntesis , Proteína p53 Supresora de Tumor/biosíntesis , Línea Celular Tumoral , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Melanoma/genética , Melanoma/mortalidad , Melanoma/patología , Metástasis de la Neoplasia , Nucleósido-Difosfato Quinasa/genética , Tasa de Supervivencia , Proteína Tumoral p73/genética , Proteína p53 Supresora de Tumor/genética
5.
Lab Invest ; 98(3): 304-314, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29400699

RESUMEN

Nucleoside diphosphate kinases are enzymes present in all domains of life. In animals, they are called Nme or Nm23 proteins, and are divided into group I and II. Human Nme1 was the first protein identified as a metastasis suppressor. Because of its medical importance, it has been extensively studied. In spite of the large research effort, the exact mechanism of metastasis suppression remains unclear. It is unknown which of the biochemical properties or biological functions are responsible for the antimetastatic role of the mammalian Nme1. Furthermore, it is not clear at which point in the evolution of life group I Nme proteins acquired the potential to suppress metastasis, a process that is usually associated with complex animals. In this study we performed a series of tests and assays on a group I Nme protein from filasterean Capsaspora owczarzaki, a close unicellular relative of animals. The aim was to compare the protein to the well-known human Nme1 and Nme2 homologs, as well as with the homolog from a simple animal-sponge (Porifera), in order to see how the proteins changed with the transition to multicellularity, and subsequently in the evolution of complex animals. We found that premetazoan-type protein is highly similar to the homologs from sponge and human, in terms of biochemical characteristics and potential biological functions. Like the human Nme1 and Nme2, it is able to diminish the migratory potential of human cancer cells in culture.


Asunto(s)
Movimiento Celular , Eucariontes/enzimología , Nucleósido Difosfato Quinasas NM23/metabolismo , Secuencia de Aminoácidos , Ensayos de Migración Celular , Eucariontes/genética , Evolución Molecular , Células HeLa , Humanos , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética
6.
Lab Invest ; 98(5): 554-570, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29453400

RESUMEN

Metastasis suppressors are genes/proteins involved in regulation of one or more steps of the metastatic cascade while having little or no effect on tumor growth. The list of putative metastasis suppressors is constantly increasing although thorough understanding of their biochemical mechanism(s) and evolutionary history is still lacking. Little is known about tumor-related genes in invertebrates, especially non-bilaterians and unicellular relatives of animals. However, in the last few years we have been witnessing a growing interest in this subject since it has been shown that many disease-related genes are already present in simple non-bilateral animals and even in their unicellular relatives. Studying human diseases using simpler organisms that may better represent the ancestral conditions in which the specific disease-related genes appeared could provide better understanding of how those genes function. This review represents a compilation of published literature and our bioinformatics analysis to gain a general insight into the evolutionary history of metastasis-suppressor genes in animals (Metazoa). Our survey suggests that metastasis-suppressor genes emerged in three different periods in the evolution of Metazoa: before the origin of metazoans, with the emergence of first animals and at the origin of vertebrates.


Asunto(s)
Genes Supresores de Tumor/fisiología , Metástasis de la Neoplasia/prevención & control , Animales , Biología Computacional , Evolución Molecular , Encuestas y Cuestionarios , Proteínas Supresoras de Tumor/fisiología
7.
Biochim Biophys Acta ; 1863(8): 1969-78, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27108184

RESUMEN

Integrins play key roles in the regulation of tumor cell adhesion, migration, invasion and sensitivity to anticancer drugs. In the present study we investigate the mechanism of resistance of tongue squamous carcinoma cells Cal27 with de novo integrin αvß3 expression to anticancer drugs. Cal27-derived cell clones, obtained by transfection of plasmid containing integrin subunit ß3 cDNA, as compared to control cells demonstrate: expression of integrin αvß3; increased expression of integrin αvß5; increased adhesion to fibronectin and vitronectin; resistance to cisplatin, mitomycin C, doxorubicin and 5-fluorouracil; increased migration and invasion, increased amount of integrin-linked kinase (ILK) and decreased amounts of non-receptor tyrosine kinase (Src) and pSrc(Y418). Knockdown of ILK and integrin ß5 in cells expressing integrin αvß3 ruled out their involvement in drug resistance. Opposite, Src knockdown in Cal27 cells which led to a reduction in pSrc(Y418), as well as treatment with the pSrc(Y418) inhibitors dasatinib and PP2, conferred resistance to all four anticancer drugs, indicating that the loss of pSrc(Y418) is responsible for the observed effect. We identified differential integrin signaling between Cal27 and integrin αvß3-expressing cells. In Cal27 cells integrin αv heterodimers signal through pSrc(Y418) while this is not the case in integrin αvß3-expressing cells. Finally, we show that dasatinib counteracts the effect of cisplatin in two additional head and neck squamous cell carcinoma (HNSCC) cell lines Cal33 and Detroit562. Our results suggest that pSrc(Y418) inhibitors, potential drugs for cancer therapy, may reduce therapeutic efficacy if combined with chemotherapeutics, and might not be recommended for HNSCC treatment.


Asunto(s)
Carcinoma de Células Escamosas/patología , Resistencia a Antineoplásicos/fisiología , Integrina alfaVbeta3/fisiología , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/fisiología , Neoplasias de la Lengua/patología , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Cisplatino/farmacología , Dasatinib/farmacología , Doxorrubicina/farmacología , Sinergismo Farmacológico , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Genes src , Humanos , Integrina alfaVbeta3/biosíntesis , Integrina alfaVbeta3/genética , Cadenas beta de Integrinas/fisiología , Mitomicina/farmacología , Invasividad Neoplásica , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Mutación Puntual , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Interferencia de ARN , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/metabolismo
8.
PLoS One ; 9(3): e92687, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24658123

RESUMEN

Abnormal regulation of cell migration and altered rearrangement of cytoskeleton are characteristic of metastatic cells. The first described suppressor of metastatic processes is NM23-H1, which displays NDPK (nucleoside-diphosphate kinase) activity. To better understand the role of nm23 genes in cell migration, we investigated the function of NDK-1, the sole Caenorhabditis elegans homolog of group I NDPKs in distal tip cell (DTC) migration. Dorsal phase of DTC migration is regulated by integrin mediated signaling. We find that ndk-1 loss of function mutants show defects in this phase. Epistasis analysis using mutants of the α-integrin ina-1 and the downstream functioning motility-promoting signaling module (referred to as CED-10 pathway) placed NDK-1 downstream of CED-10/Rac. As DTC migration and engulfment of apoptotic corpses are analogous processes, both partially regulated by the CED-10 pathway, we investigated defects of apoptosis in ndk-1 mutants. Embryos and germ cells defective for NDK-1 showed an accumulation of apoptotic cell corpses. Furthermore, NDK-1::GFP is expressed in gonadal sheath cells, specialized cells for engulfment and clearence of apoptotic corpses in germ line, which indicates a role for NDK-1 in apoptotic corpse removal. In addition to the CED-10 pathway, engulfment in the worm is also mediated by the CED-1 pathway. abl-1/Abl and abi-1/Abi, which function in parallel to both CED-10/CED-1 pathways, also regulate engulfment and DTC migration. ndk-1(-);abi-1(-) double mutant embryos display an additive phenotype (e. g. enhanced number of apoptotic corpses) which suggests that ndk-1 acts in parallel to abi-1. Corpse number in ndk-1(-);ced-10(-) double mutants, however, is similar to ced-10(-) single mutants, suggesting that ndk-1 acts downstream of ced-10 during engulfment. In addition, NDK-1 shows a genetic interaction with DYN-1/dynamin, a downstream component of the CED-1 pathway. In summary, we propose that NDK-1/NDPK might represent a converging point of CED-10 and CED-1 pathways in the process of cytoskeleton rearrangement.


Asunto(s)
Apoptosis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Movimiento Celular/genética , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Embrión no Mamífero/metabolismo , Genes Letales , Humanos , Mutación , Fenotipo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
9.
Biochim Biophys Acta ; 1820(9): 1412-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22192783

RESUMEN

BACKGROUND: Epigenetic changes play a role in all major events during tumorigenesis and changes in glycan structures are hallmarks of virtually every cancer. Also, proper N-glycosylation of membrane receptors is important in cell to cell and cell-environment communication. To study how modulation of epigenetic information can affect N-glycan expression we analyzed effects of epigenetic inhibitors on HeLa cell membrane N-glycome. METHODS: HeLa cells were treated with DNA methylation (zebularin and 5-aza-2-deoxycytidine) and histone deacetylation (trichostatin A and Na-butyrate) inhibitors. The effects on HeLa cell membrane N-glycome were analyzed by hydrophilic interaction high performance liquid chromatography (HILIC). RESULTS: Each of the four epigenetic inhibitors induced changes in the expression of HeLa cell membrane N-glycans that were seen either as an increase or a decrease of individual glycans in the total N-glycome. Compared to DNA methylation inhibitors, histone deacetylation inhibitors showed more moderate changes, probably due to their higher gene target selectivity. CONCLUSIONS: The results clearly show that composition of HeLa cell membrane N-glycome can be specifically altered by epigenetic inhibitors. GENERAL SIGNIFICANCE: Glycans on the cell membrane are essential elements of tumor cell's metastatic potential and are also an entry point for nearly all pathogenic microorganisms. Since epigenetic inhibitors used in this work are registered drugs, our results provide a new line of research in the application of these drugs as anticancer and antimicrobial agents. This article is part of a Special Issue entitled Glycoproteomics.


Asunto(s)
Epigénesis Genética/fisiología , Polisacáridos/genética , Antineoplásicos/farmacología , Azacitidina/análogos & derivados , Azacitidina/farmacología , Butiratos/farmacología , Secuencia de Carbohidratos , Citidina/análogos & derivados , Citidina/farmacología , Metilación de ADN/efectos de los fármacos , Decitabina , Regulación Neoplásica de la Expresión Génica , Glicómica/métodos , Células HeLa , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Datos de Secuencia Molecular , Polisacáridos/análisis , Polisacáridos/metabolismo
10.
PLoS One ; 6(10): e26024, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21991393

RESUMEN

Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes including proliferation and endocytosis. Although the protein has been shown to have a positive regulatory role in clathrin- and dynamin-mediated micropinocytosis, its roles in macropinocytosis and phagocytosis have not been studied. The additional non-housekeeping roles of NDPK are often independent of enzyme activity but dependent on the expression level of the protein. In this study we altered the expression level of NDPK in the model eukaryotic organism Dictyostelium discoideum through antisense inhibition and overexpression. We demonstrate that NDPK levels affect growth, endocytosis and exocytosis. In particular we find that Dictyostelium NDPK negatively regulates endocytosis in contrast to the positive regulatory role identified in higher eukaryotes. This can be explained by the differences in types of endocytosis that have been studied in the different systems - phagocytosis and macropinocytosis in Dictyostelium compared with micropinocytosis in mammalian cells. This is the first report of a role for NDPK in regulating macropinocytosis and phagocytosis, the former being the major fluid phase uptake mechanism for macrophages, dendritic cells and other (non dendritic) cells exposed to growth factors.


Asunto(s)
Dictyostelium/citología , Dictyostelium/enzimología , Exocitosis , Nucleósido Difosfato Quinasas NM23/metabolismo , Fagocitosis , Pinocitosis , Actinas/metabolismo , Calmodulina/metabolismo , Movimiento Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Dictyostelium/efectos de los fármacos , Dictyostelium/crecimiento & desarrollo , Exocitosis/efectos de los fármacos , Micrococcus luteus/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Pinocitosis/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Factores de Tiempo , Transformación Genética/efectos de los fármacos
11.
Naunyn Schmiedebergs Arch Pharmacol ; 384(4-5): 451-60, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21533994

RESUMEN

Nucleoside diphosphate kinases (NDPKs) are evolutionarily conserved enzymes involved in many biological processes such as metastasis, proliferation, development, differentiation, ciliary functions, vesicle transport and apoptosis in vertebrates. Biochemical mechanisms of these processes are still largely unknown. Sponges (Porifera) are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestors' genomic features. The purpose of this study was to address structural and functional properties of group II Nme6 gene/protein ortholog from the marine sponge Suberites domuncula, Nme6, in order to elucidate its evolutionary history. Sponge Nme6 gene and promoter were sequenced and analysed with various bioinformatical tools. Nme6 and Nme6Δ31 proteins were produced in E. coli strain BL21 and NDPK activity was measured using a coupled pyruvate kinase-lactate dehydrogenase assay. Subcellular localization in human tumour cells was examined by confocal scanning microscopy. Our results show that the sponge Nme6 compared to human Nme6 does not possess NDPK activity, does not localize in mitochondria at least in human cells although it has a putative mitochondrial signal sequence, lacks two recent introns that comprise miRNAs and have different transcriptional binding sites in the promoter region. Therefore, we conclude that the structure of Nme6 gene has changed during metazoan evolution possibly in correlation with the function of the protein.


Asunto(s)
Evolución Molecular , Nucleósido Difosfato Quinasas NM23/química , Suberites/enzimología , Suberites/genética , Animales , Secuencia de Bases , Escherichia coli/genética , Células HeLa , Humanos , Intrones/genética , Microscopía Confocal , Datos de Secuencia Molecular , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Estructura Secundaria de Proteína , Fracciones Subcelulares , Suberites/ultraestructura , Transfección
12.
BMC Evol Biol ; 11: 87, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21457554

RESUMEN

BACKGROUND: Nucleoside diphosphate kinases NDPK are evolutionarily conserved enzymes present in Bacteria, Archaea and Eukarya, with human Nme1 the most studied representative of the family and the first identified metastasis suppressor. Sponges (Porifera) are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestor's genomic features. Recent studies show that sponges have a wide repertoire of genes many of which are involved in diseases in more complex metazoans. The original function of those genes and the way it has evolved in the animal lineage is largely unknown. Here we report new results on the metastasis suppressor gene/protein homolog from the marine sponge Suberites domuncula, NmeGp1Sd. The purpose of this study was to investigate the properties of the sponge Group I Nme gene and protein, and compare it to its human homolog in order to elucidate the evolution of the structure and function of Nme. RESULTS: We found that sponge genes coding for Group I Nme protein are intron-rich. Furthermore, we discovered that the sponge NmeGp1Sd protein has a similar level of kinase activity as its human homolog Nme1, does not cleave negatively supercoiled DNA and shows nonspecific DNA-binding activity. The sponge NmeGp1Sd forms a hexamer, like human Nme1, and all other eukaryotic Nme proteins. NmeGp1Sd interacts with human Nme1 in human cells and exhibits the same subcellular localization. Stable clones expressing sponge NmeGp1Sd inhibited the migratory potential of CAL 27 cells, as already reported for human Nme1, which suggests that Nme's function in migratory processes was engaged long before the composition of true tissues. CONCLUSIONS: This study suggests that the ancestor of all animals possessed a NmeGp1 protein with properties and functions similar to evolutionarily recent versions of the protein, even before the appearance of true tissues and the origin of tumors and metastasis.


Asunto(s)
Evolución Molecular , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Poríferos/enzimología , Poríferos/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Intrones , Datos de Secuencia Molecular , Filogenia , Poríferos/clasificación , Alineación de Secuencia
13.
Mol Cell Biochem ; 329(1-2): 63-71, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19373546

RESUMEN

The family of Nm23/NDPK (nucleoside diphosphate kinase) proteins regulates a vast variety of cellular processes and, therefore, participates in important physiological events like proliferation, differentiation, molecular transport, and apoptosis. The majority of experimental data concerning this gene family has been focused on their engagement in metastasis formation--a critical point in tumor progression. In spite of the growing amount of evidence suggesting the multifunctional role of nm23/NDPKs the specific functions of every particular family member is still elusive. This review focuses on recent evidence on specific subcellular localization of Nm23-H1/NDPK A and Nm23-H2/NDPK B proteins and attempts to connect the findings to their diverse biological functions in the normal and/or malignantly transformed cell.


Asunto(s)
Isoenzimas/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Animales , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido-Difosfato Quinasa/genética , Fracciones Subcelulares/metabolismo
14.
Mol Carcinog ; 48(9): 779-89, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19263457

RESUMEN

nm23-H1 was found to diminish metastatic potential of carcinoma cell lines and therefore was placed in the group of metastatic suppressor genes. Its protein product has a function of a nucleoside diphosphate kinase (NDPK) as well as protein kinase and nuclease. Though it was found that Nm23-H1 is involved in many cellular processes, it is still not known how it promotes metastatic suppressor activity. Since the process of metastasis is dependent on adhesion properties of cells, the goal of our work was to describe the adhesion properties of CAL 27 cells (oral squamous cell carcinoma of the tongue) overexpressing FLAG/nm23-H1. In our experiments, cells overexpressing nm23-H1 show reduced migratory and invasive potential. Additionally, cells overexpressing nm23-H1 adhere stronger on substrates (collagen IV and fibronectin) and show more spread morphology than the control cells. Results obtained by EGF induction of migration revealed that the adhesion strength predetermined cell response to chemoattractant and that Nm23-H1, in this cell type, does not interfere with, EGF induced, Ras signaling pathway. These data contribute to the overall knowledge about nm23-H1 and its role in cell adhesion, migration, and invasion, especially in oral squamous cell carcinoma.


Asunto(s)
Movimiento Celular/fisiología , Nucleósido Difosfato Quinasas NM23/metabolismo , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Citometría de Flujo , Humanos , Inmunohistoquímica , Inmunoprecipitación , Integrina beta1/genética , Integrina beta1/metabolismo , Microscopía Confocal , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Nucleósido Difosfato Quinasas NM23/genética , Invasividad Neoplásica , Oligopéptidos , Péptidos/genética , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transfección
15.
Mol Carcinog ; 45(8): 627-33, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16739125

RESUMEN

The human nm23-H1 was discovered as a tumor metastasis suppressor based on its reduced expression in melanoma cell lines with low versus high metastatic potential. It encodes for one of two subunits of the nucleoside-diphosphate kinase. Besides its role in the maintenance of the cells NTP pool, nm23 plays a key role in different cellular processes. The role of nm23-H1 in these processes still has to be elucidated. Our goal was to identify Nm23-H1 downstream targets by subjecting Nm23-H1 overexpressing CAL 27 cells oral squamous cell carcinoma (OSSC) to microarray analysis. The genes with changed expression patterns could be clustered into several groups: transforming growth factor beta (TGFbeta) signaling pathway, cell adhesion, invasion and motility, proteasome machinery, cell-cycle, epithelial structural and related molecules and others. Based on the expression patterns observed we presume that nm23-H1 might have a role in OSSCs, which should be confirmed by future experiments.


Asunto(s)
Carcinoma de Células Escamosas/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Neoplasias de la Boca/genética , Nucleósido-Difosfato Quinasa/fisiología , Humanos , Nucleósido Difosfato Quinasas NM23 , Nucleósido-Difosfato Quinasa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
Exp Cell Res ; 298(1): 275-84, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15242782

RESUMEN

The human Nm23-H1/NDPK A and Nm23-H2/NDPK B encode for two subunits of nucleoside diphosphate kinase--a ubiquitous enzyme that transfers the terminal phosphates from ATP to (d)NDPs. Although having an 88% amino acid sequence identity and an already assigned biochemical role in the cell, the two subunits appear to have additional and distinctive cell functions. In particular, both subunits have been reported to be involved in tumor progression and metastasis. The aim of this study was to determine the specific, and potentially distinct, localizations of both subunits in tumor cells of different origin and differentiation and therefore to search for a possible link between their localization and the stage of disease. We used the GFP reporter system to analyze the ectopic expression of GFP-Nm23 proteins in head and neck tumor cell lines by fluorescent microscopy techniques. Our experiments revealed that GFP-fused Nm23-H1 and -H2 proteins display the same localization in transfected cells, regardless of their origin and differentiation status. The proteins are principally found in the cytosol and the endoplasmic reticulum. Moreover, some cells exhibit nuclear staining, which appears to be cell cycle-dependent.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Compartimento Celular/genética , Neoplasias/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Subunidades de Proteína/metabolismo , Proteínas/metabolismo , Biomarcadores de Tumor/genética , Ciclo Celular/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Nucleósido Difosfato Quinasas NM23 , Neoplasias/genética , Nucleósido-Difosfato Quinasa/genética , Subunidades de Proteína/genética , Proteínas/genética , Seudópodos/metabolismo , Seudópodos/ultraestructura , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
17.
Urol Res ; 32(3): 229-35, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15107966

RESUMEN

The aim of this study was to investigate the alterations in the DPC4 tumor suppressor gene in renal cell carcinoma (RCC). The study included 32 tumor specimens from Croatian patients with a diagnosis of RCC. Loss of heterozygosity (LOH) was investigated using three specific oligonucleotide primers for the three DPC4 polymorphic markers. Our investigation of mutations in the DPC4 gene was focused on exons 2, 8, 10 and 11. These exons belong to the mad homology domains 1 (exon 2) and 2 (exons 8-11). The presence of previously documented mutation in exons 2 (codon 100), 8 (codon 358), 10 (codon 412), and 11 (codon 493) was investigated by restriction fragment length polymorphism (RFLP) analysis, as a first screening method. Finally, the study was extended to search for any other type of mutation in the four selected exons by single strand conformation polymorphism (SSCP) assay. To increase heterozygosity, all 32 tumor specimens were tested with primers for three polymorphic markers. A total of 30 (94%) were heterozygous (informative). LOH at any of these markers was only revealed in four (13%) of the 30 informative samples. No tumor samples were positive for mutation in the four investigated exons analyzed by RFLP. In addition, no samples showed other types of mutation in denaturing conditions. Genetic alterations were shown only in a minority of patients, probably because mutation analysis of the DPC4 gene has only been partially covered by our work. It seems that exon 2 (belonging to the MH1 domain) and exons 8, 10, 11 (belonging to the MH2 domain) are not altered in RCC. This investigation must be extended on other exons of DPC4 for a better understanding a role of this gene in renal cell carcinoma.


Asunto(s)
Carcinoma de Células Renales/genética , Proteínas de Unión al ADN/genética , Neoplasias Renales/genética , Transactivadores/genética , Femenino , Humanos , Pérdida de Heterocigocidad , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo Conformacional Retorcido-Simple , Proteína Smad4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...