Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(4): 2481-2497, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633088

RESUMEN

Thermal therapies treat tumors by means of heat, greatly reducing pain, post-operation complications, and cost as compared to traditional methods. Yet, effective tools to avoid under- or over-treatment are mostly needed, to guide surgeons in laparoscopic interventions. In this work, we investigated the temperature-dependent optical signatures of ex-vivo calf brain, lung, and heart tissues based on the reduced scattering and absorption coefficients in the near-infrared spectral range (657 to 1107 nm). These spectra were measured by time domain diffuse optics, applying a step-like spatially homogeneous thermal treatment at 43 °C, 60 °C, and 80 °C. We found three main increases in scattering spectra, possibly due to the denaturation of collagen, myosin, and the proteins' secondary structure. After 75 °C, we found the rise of two new peaks at 770 and 830 nm in the absorption spectra due to the formation of a new chromophore, possibly related to hemoglobin or myoglobin. This research marks a significant step forward in controlling thermal therapies with diffuse optical techniques by identifying several key markers of thermal damage. This could enhance the ability to monitor and adjust treatment in real-time, promising improved outcomes in tumor therapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38083459

RESUMEN

In this work, we devised the first characterization of the optical and thermal properties of ex vivo cardiac tissue as a function of different selected temperatures, ranging from room temperature to hyperthermic and ablative temperatures. The broadband (i.e., from 650 nm to 1100 nm) estimation of the optical properties, i.e., absorption coefficient (µa) and reduced scattering coefficient $({\mu ^{\prime}}_s)$, was performed by means of time-domain diffuse optics. Besides, the measurement of the thermal properties was based on the transient hot-wire technique, employing a dual-needle probe to estimate the tissue thermal conductivity (k), thermal diffusivity (α), and volumetric heat capacity (Cv). Increasing the tissue temperature led to variations in the spectral characteristics of µa (e.g., the redshift of the 780 nm peak, the rise of a new peak at 840 nm, and the formation of a valley at 900 nm). Moreover, an increase in the values of ${\mu ^{\prime}}_s$ was assessed as tissue temperature raised (e.g., for 800 nm, at 25 °C ${\mu ^{\prime}}_s = 9.8{\text{ c}}{{\text{m}}^{{\text{ - 1}}}}$, while at 77 °C ${\mu ^{\prime}}_s = 29.1{\text{ c}}{{\text{m}}^{{\text{ - 1}}}}$). Concerning the thermal properties characterization, k was almost constant in the selected temperature interval. Conversely, α and Cv were subjected to an increase and a decrease with temperature, respectively; thus, they registered values of 0.190 mm2/s and 3.03 MJ/(m3•K) at the maximum investigated temperature (79 °C), accordingly.Clinical Relevance- The experimentally obtained optical and thermal properties of cardiac tissue are useful to improve the accuracy of simulation-based tools for thermal therapy planning. Furthermore, the measured properties can serve as a reference for the realization of tissue-mimicking phantoms for medical training and testing of medical instruments.


Asunto(s)
Hipertermia Inducida , Temperatura , Calor , Óptica y Fotónica , Conductividad Térmica
3.
Biomed Opt Express ; 14(11): 5749-5763, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38021118

RESUMEN

Diffuse Raman spectroscopy (DIRS) extends the high chemical specificity of Raman scattering to in-depth investigation of thick biological tissues. We present here a novel approach for time-domain diffuse Raman spectroscopy (TD-DIRS) based on a single-pixel detector and a digital micromirror device (DMD) within an imaging spectrometer for wavelength encoding. This overcomes the intrinsic complexity and high cost of detection arrays with ps-resolving time capability. Unlike spatially offset Raman spectroscopy (SORS) or frequency offset Raman spectroscopy (FORS), TD-DIRS exploits the time-of-flight distribution of photons to probe the depth of the Raman signal at a single wavelength with a single source-detector separation. We validated the system using a bilayer tissue-bone mimicking phantom composed of a 1 cm thick slab of silicone overlaying a calcium carbonate specimen and demonstrated a high differentiation of the two Raman signals. We reconstructed the Raman spectra of the two layers, offering the potential for improved and quantitative material analysis. Using a bilayer phantom made of porcine muscle and calcium carbonate, we proved that our system can retrieve Raman peaks even in the presence of autofluorescence typical of biomedical tissues. Overall, our novel TD-DIRS setup proposes a cost-effective and high-performance approach for in-depth Raman spectroscopy in diffusive media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA