Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Genom ; 3(6): 100332, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37388906

RESUMEN

Based on evaluations of imputation performed on a genotype dataset consisting of about 11,000 sub-Saharan African (SSA) participants, we show Trans-Omics for Precision Medicine (TOPMed) and the African Genome Resource (AGR) to be currently the best panels for imputing SSA datasets. We report notable differences in the number of single-nucleotide polymorphisms (SNPs) that are imputed by different panels in datasets from East, West, and South Africa. Comparisons with a subset of 95 SSA high-coverage whole-genome sequences (WGSs) show that despite being about 20-fold smaller, the AGR imputed dataset has higher concordance with the WGSs. Moreover, the level of concordance between imputed and WGS datasets was strongly influenced by the extent of Khoe-San ancestry in a genome, highlighting the need for integration of not only geographically but also ancestrally diverse WGS data in reference panels for further improvement in imputation of SSA datasets. Approaches that integrate imputed data from different panels could also lead to better imputation.

2.
Neurol Genet ; 9(4): e200077, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37346932

RESUMEN

Background and Objectives: Amyotrophic lateral sclerosis (ALS) is a degenerative condition of the brain and spinal cord in which protein-coding variants in known ALS disease genes explain a minority of sporadic cases. There is a growing interest in the role of noncoding structural variants (SVs) as ALS risk variants or genetic modifiers of ALS phenotype. In small European samples, specific short SV alleles in noncoding regulatory regions of SCAF4, SQSTM1, and STMN2 have been reported to be associated with ALS, and several groups have investigated the possible role of SMN1/SMN2 gene copy numbers in ALS susceptibility and clinical severity. Methods: Using short-read whole genome sequencing (WGS) data, we investigated putative ALS-susceptibility SCAF4 (3'UTR poly-T repeat), SQSTM1 (intron 5 AAAC insertion), and STMN2 (intron 3 CA repeat) alleles in African ancestry patients with ALS and described the architecture of the SMN1/SMN2 gene region. South African cases with ALS (n = 114) were compared with ancestry-matched controls (n = 150), 1000 Genomes Project samples (n = 2,336), and H3Africa Genotyping Chip Project samples (n = 347). Results: There was no association with previously reported SCAF4 poly-T repeat, SQSTM1 AAAC insertion, and long STMN2 CA alleles with ALS risk in South Africans (p > 0.2). Similarly, SMN1 and SMN2 gene copy numbers did not differ between South Africans with ALS and matched population controls (p > 0.9). Notably, 20% of the African samples in this study had no SMN2 gene copies, which is a higher frequency than that reported in Europeans (approximately 7%). Discussion: We did not replicate the reported association of SCAF4, SQSTM1, and STMN2 short SVs with ALS in a small South African sample. In addition, we found no link between SMN1 and SMN2 copy numbers and susceptibility to ALS in this South African sample, which is similar to the conclusion of a recent meta-analysis of European studies. However, the SMN gene region findings in Africans replicate previous results from East and West Africa and highlight the importance of including diverse population groups in disease gene discovery efforts. The clinically relevant differences in the SMN gene architecture between African and non-African populations may affect the effectiveness of targeted SMN2 gene therapy for related diseases such as spinal muscular atrophy.

3.
BMC Bioinformatics ; 23(1): 498, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402955

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) are a powerful method to detect associations between variants and phenotypes. A GWAS requires several complex computations with large data sets, and many steps may need to be repeated with varying parameters. Manual running of these analyses can be tedious, error-prone and hard to reproduce. RESULTS: The H3AGWAS workflow from the Pan-African Bioinformatics Network for H3Africa is a powerful, scalable and portable workflow implementing pre-association analysis, implementation of various association testing methods and post-association analysis of results. CONCLUSIONS: The workflow is scalable-laptop to cluster to cloud (e.g., SLURM, AWS Batch, Azure). All required software is containerised and can run under Docker or Singularity.


Asunto(s)
Biología Computacional , Estudio de Asociación del Genoma Completo , Flujo de Trabajo , Biología Computacional/métodos , Programas Informáticos , Fenotipo
4.
Neurol Genet ; 8(1): e654, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35047667

RESUMEN

BACKGROUND AND OBJECTIVES: To perform the first screen of 44 amyotrophic lateral sclerosis (ALS) genes in a cohort of African genetic ancestry individuals with ALS using whole-genome sequencing (WGS) data. METHODS: One hundred three consecutive cases with probable/definite ALS (using the revised El Escorial criteria), and self-categorized as African genetic ancestry, underwent WGS using various Illumina platforms. As population controls, 238 samples from various African WGS data sets were included. Our analysis was restricted to 44 ALS genes, which were curated for rare sequence variants and classified according to the American College of Medical Genetics guidelines as likely benign, uncertain significance, likely pathogenic, or pathogenic variants. RESULTS: Thirteen percent of 103 ALS cases harbored pathogenic variants; 5 different SOD1 variants (N87S, G94D, I114T, L145S, and L145F) in 5 individuals (5%, 1 familial case), pathogenic C9orf72 repeat expansions in 7 individuals (7%, 1 familial case) and a likely pathogenic ANXA11 (G38R) variant in 1 individual. Thirty individuals (29%) harbored ≥1 variant of uncertain significance; 10 of these variants had limited pathogenic evidence, although this was insufficient to permit confident classification as pathogenic. DISCUSSION: Our findings show that known ALS genes can be expected to identify a genetic cause of disease in >11% of sporadic ALS cases of African genetic ancestry. Similar to European cohorts, the 2 most frequent genes harboring pathogenic variants in this population group are C9orf72 and SOD1.

5.
Front Pharmacol ; 12: 634016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721006

RESUMEN

Introduction: Investigating variation in genes involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs are key to characterizing pharmacogenomic (PGx) relationships. ADME gene variation is relatively well characterized in European and Asian populations, but data from African populations are under-studied-which has implications for drug safety and effective use in Africa. Results: We identified significant ADME gene variation in African populations using data from 458 high-coverage whole genome sequences, 412 of which are novel, and from previously available African sequences from the 1,000 Genomes Project. ADME variation was not uniform across African populations, particularly within high impact coding variation. Copy number variation was detected in 116 ADME genes, with equal ratios of duplications/deletions. We identified 930 potential high impact coding variants, of which most are discrete to a single African population cluster. Large frequency differences (i.e., >10%) were seen in common high impact variants between clusters. Several novel variants are predicted to have a significant impact on protein structure, but additional functional work is needed to confirm the outcome of these for PGx use. Most variants of known clinical outcome are rare in Africa compared to European populations, potentially reflecting a clinical PGx research bias to European populations. Discussion: The genetic diversity of ADME genes across sub-Saharan African populations is large. The Southern African population cluster is most distinct from that of far West Africa. PGx strategies based on European variants will be of limited use in African populations. Although established variants are important, PGx must take into account the full range of African variation. This work urges further characterization of variants in African populations including in vitro and in silico studies, and to consider the unique African ADME landscape when developing precision medicine guidelines and tools for African populations.

6.
Pharmacogenomics J ; 21(6): 649-656, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34302047

RESUMEN

Chloroquine/hydroxychloroquine have been proposed as potential treatments for COVID-19. These drugs have warning labels for use in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Analysis of whole genome sequence data of 458 individuals from sub-Saharan Africa showed significant G6PD variation across the continent. We identified nine variants, of which four are potentially deleterious to G6PD function, and one (rs1050828) that is known to cause G6PD deficiency. We supplemented data for the rs1050828 variant with genotype array data from over 11,000 Africans. Although this variant is common in Africans overall, large allele frequency differences exist between sub-populations. African sub-populations in the same country can show significant differences in allele frequency (e.g. 16.0% in Tsonga vs 0.8% in Xhosa, both in South Africa, p = 2.4 × 10-3). The high prevalence of variants in the G6PD gene found in this analysis suggests that it may be a significant interaction factor in clinical trials of chloroquine and hydroxychloroquine for treatment of COVID-19 in Africans.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Cloroquina/efectos adversos , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/genética , Hidroxicloroquina/efectos adversos , África del Sur del Sahara/epidemiología , COVID-19/epidemiología , COVID-19/genética , Bases de Datos Genéticas , Variación Genética/genética , Deficiencia de Glucosafosfato Deshidrogenasa/tratamiento farmacológico , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Humanos , Mutación Missense/genética , Factores de Riesgo
7.
IBRO Neurosci Rep ; 10: 130-135, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34179866

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized primarily by progressive loss of motor neurons. Although ALS occurs worldwide and the frequency and spectrum of identifiable genetic causes of disease varies across populations, very few studies have included African subjects. In addition to a hexanucleotide repeat expansion (RE) in C9orf72, the most common genetic cause of ALS in Europeans, REs in ATXN2, NIPA1 and ATXN1 have shown variable associations with ALS in Europeans. Intermediate range expansions in some of these genes (e.g. ATXN2) have been reported as potential risk factors, or phenotypic modifiers, of ALS. Pathogenic expansions in NOP56 cause spinocerebellar ataxia-36, which can present with prominent motor neuron degeneration. Here we compare REs in these genes in a cohort of Africans with ALS and population controls using whole genome sequencing data. Targeting genotyping of short tandem repeats at known loci within ATXN2, NIPA1, ATXN1 and NOP56 was performed using ExpansionHunter software in 105 Southern African (SA) patients with ALS. African population controls were from an in-house SA population control database (n = 25), the SA Human Genome Program (n = 24), the Simons Genome Diversity Project (n = 39) and the Illumina Polaris Diversity Cohort (IPDC) dataset (n = 50). We found intermediate RE alleles in ATXN2 (27-33 repeats) and ATXN1 (33-35 repeats), and NIPA1 long alleles (≥8 repeats) were rare in Africans, and not associated with ALS (p > 0.17). NOP56 showed no expanded alleles in either ALS or controls. We also compared the differences in allele distributions between the African and n = 50 European controls (from the IPDC). There was a statistical significant difference in the distribution of the REs in the ATXN1 between African and European controls (Chi-test p < 0.001), and NIPA1 showed proportionately more longer alleles (RE > 8) in Europeans vs. Africans (Fisher's p = 0.016). The distribution of RE alleles in ATXN2 and NOP56 were similar amongst African and European controls. In conclusion, repeat expansions in ATXN2, NIPA1 and ATXN1, which showed associations with ALS in Europeans, were not replicated in Southern Africans with ALS.

8.
Virus Evol ; 7(1): veaa087, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33936774

RESUMEN

For the past 20 years, the recombination detection program (RDP) project has focused on the development of a fast, flexible, and easy to use Windows-based recombination analysis tool. Whereas previous versions of this tool have relied on considerable user-mediated verification of detected recombination events, the latest iteration, RDP5, is automated enough that it can be integrated within analysis pipelines and run without any user input. The main innovation enabling this degree of automation is the implementation of statistical tests to identify recombination signals that could be attributable to evolutionary processes other than recombination. The additional analysis time required for these tests has been offset by algorithmic improvements throughout the program such that, relative to RDP4, RDP5 will still run up to five times faster and be capable of analyzing alignments containing twice as many sequences (up to 5000) that are five times longer (up to 50 million sites). For users wanting to remove signals of recombination from their datasets before using them for downstream phylogenetics-based molecular evolution analyses, RDP5 can disassemble detected recombinant sequences into their constituent parts and output a variety of different recombination-free datasets in an array of different alignment formats. For users that are interested in exploring the recombination history of their datasets, all the manual verification, data management and data visualization components of RDP5 have been extensively updated to minimize the amount of time needed by users to individually verify and refine the program's interpretation of each of the individual recombination events that it detects.

10.
NPJ Genom Med ; 6(1): 24, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741997

RESUMEN

Human immunodeficiency virus (HIV) infection remains a significant public health burden globally. The role of viral co-infection in the rate of progression of HIV infection has been suggested but not empirically tested, particularly among children. We extracted and classified 42 viral species from whole-exome sequencing (WES) data of 813 HIV-infected children in Botswana and Uganda categorised as either long-term non-progressors (LTNPs) or rapid progressors (RPs). The Ugandan participants had a higher viral community diversity index compared to Batswana (p = 4.6 × 10-13), and viral sequences were more frequently detected among LTNPs than RPs (24% vs 16%; p = 0.008; OR, 1.9; 95% CI, 1.6-2.3), with Anelloviridae showing strong association with LTNP status (p = 3 × 10-4; q = 0.004, OR, 3.99; 95% CI, 1.74-10.25). This trend was still evident when stratified by country, sex, and sequencing platform, and after a logistic regression analysis adjusting for age, sex, country, and the sequencing platform (p = 0.02; q = 0.03; OR, 7.3; 95% CI, 1.6-40.5). Torque teno virus (TTV), which made up 95% of the Anelloviridae reads, has been associated with reduced immune activation. We identify an association between viral co-infection and prolonged AIDs-free survival status that may have utility as a biomarker of LTNP and could provide mechanistic insights to HIV progression in children, demonstrating the added value of interrogating off-target WES reads in cohort studies.

11.
PLoS Comput Biol ; 17(2): e1008640, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33630830

RESUMEN

With more microbiome studies being conducted by African-based research groups, there is an increasing demand for knowledge and skills in the design and analysis of microbiome studies and data. However, high-quality bioinformatics courses are often impeded by differences in computational environments, complicated software stacks, numerous dependencies, and versions of bioinformatics tools along with a lack of local computational infrastructure and expertise. To address this, H3ABioNet developed a 16S rRNA Microbiome Intermediate Bioinformatics Training course, extending its remote classroom model. The course was developed alongside experienced microbiome researchers, bioinformaticians, and systems administrators, who identified key topics to address. Development of containerised workflows has previously been undertaken by H3ABioNet, and Singularity containers were used here to enable the deployment of a standard replicable software stack across different hosting sites. The pilot ran successfully in 2019 across 23 sites registered in 11 African countries, with more than 200 participants formally enrolled and 106 volunteer staff for onsite support. The pulling, running, and testing of the containers, software, and analyses on various clusters were performed prior to the start of the course by hosting classrooms. The containers allowed the replication of analyses and results across all participating classrooms running a cluster and remained available posttraining ensuring analyses could be repeated on real data. Participants thus received the opportunity to analyse their own data, while local staff were trained and supported by experienced experts, increasing local capacity for ongoing research support. This provides a model for delivering topic-specific bioinformatics courses across Africa and other remote/low-resourced regions which overcomes barriers such as inadequate infrastructures, geographical distance, and access to expertise and educational materials.


Asunto(s)
Biología Computacional/educación , Biología Computacional/métodos , ARN Ribosómico 16S , Programas Informáticos , África , Algoritmos , Curriculum , Genoma Humano , Geografía , Humanos , Microbiota
12.
Nature ; 586(7831): 741-748, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33116287

RESUMEN

The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals-comprising 50 ethnolinguistic groups, including previously unsampled populations-to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon-but in other genes, variants denoted as 'likely pathogenic' in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health.


Asunto(s)
Variación Genética , Genoma Humano/genética , Genómica , Salud , Migración Humana , África/etnología , Reparación del ADN/genética , Conjuntos de Datos como Asunto , Femenino , Flujo Génico , Genética Médica , Genética de Población , Salud/historia , Historia Antigua , Migración Humana/historia , Humanos , Inmunidad/genética , Lenguaje , Masculino , Metabolismo/genética , Selección Genética , Secuenciación Completa del Genoma
13.
medRxiv ; 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32577690

RESUMEN

Chloroquine/hydroxychloroquine have been proposed as potential treatments for COVID-19. These drugs have warning labels for use in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Analysis of whole-genome sequence data of 458 individuals from sub-Saharan Africa showed significant G6PD variation across the continent. We identified nine variants, of which four are potentially deleterious to G6PD function, and one (rs1050828) that is known to cause G6PD deficiency. We supplemented data for the rs1050828 variant with genotype array data from over 11,000 Africans. Although this variant is common in Africans overall, large allele frequency differences exist between sub-populations. African sub-populations in the same country can show significant differences in allele frequency (e.g. 16.0% in Tsonga vs 0.8% in Xhosa, both in South Africa, ρ=2.4×10 -3 ). The high prevalence of variants in the G6PD gene found in this analysis suggests that it may be a significant interaction factor in clinical trials of chloroquine and hydrochloroquine for treatment of COVID-19 in Africans.

14.
Acta Neuropsychiatr ; 32(1): 32-42, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31753055

RESUMEN

OBJECTIVE: Findings from animal studies indicate that the early gut bacteriome is a potential mechanism linking maternal prenatal stress with health trajectories in offspring. However, clinical studies are scarce and the associations of maternal psychological profiles with the early infant faecal bacteriome are unknown. This study aimed to investigate the associations of prenatal stressors and distress with early infant faecal bacterial profiles in a South African birth cohort study. METHODS: Associations between prenatal symptoms of depression, distress, intimate partner violence (IPV) and posttraumatic stress disorder (PTSD) and faecal bacterial profiles were evaluated in meconium and subsequent stool specimens from 84 mothers and 101 infants at birth, and longitudinally from a subset of 69 and 36 infants at 4-12 and 20-28 weeks of age, respectively, in a South African birth cohort study. RESULTS: Infants born to mothers that were exposed to high levels of IPV had significantly higher proportions of Citrobacter and three unclassified genera, all of which belonging to the family Enterobacteriaceae detected at birth. Proportions of these Enterobacteriaceae remained significantly increased over time (birth to 20-28 weeks of life) in infants born to mothers with high levels of IPV exposure compared to infants from mothers with no/low IPV exposure. Infants born to mothers exposed to IPV also had higher proportions of the genus Weissella at 4-12 weeks compared to infants from mothers with no/low IPV exposure. Faecal specimens from mothers exposed to IPV had higher proportions of the family Lactobacillaceae and lower proportions of Peptostreptococcaceae at birth. Maternal psychological distress was associated with decreased proportions of the family Veillonellaceae in infants at 20-28 weeks and a slower decline in Gammaproteobacteria over time. No changes in beta diversity were apparent for maternal or infant faecal bacterial profiles in relation to any of the prenatal measures for psychological adversities. CONCLUSION: Maternal lifetime IPV and antenatal psychological distress are associated with altered bacterial profiles in infant and maternal faecal bacteria. These findings may provide insights in the involvement of the gut bacteria linking maternal psychological adversity and the maturing infant brain.


Asunto(s)
Heces/microbiología , Madres/psicología , Efectos Tardíos de la Exposición Prenatal/microbiología , Estrés Psicológico/microbiología , Adulto , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Embarazo
15.
BMC Bioinformatics ; 19(1): 457, 2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30486782

RESUMEN

BACKGROUND: The Pan-African bioinformatics network, H3ABioNet, comprises 27 research institutions in 17 African countries. H3ABioNet is part of the Human Health and Heredity in Africa program (H3Africa), an African-led research consortium funded by the US National Institutes of Health and the UK Wellcome Trust, aimed at using genomics to study and improve the health of Africans. A key role of H3ABioNet is to support H3Africa projects by building bioinformatics infrastructure such as portable and reproducible bioinformatics workflows for use on heterogeneous African computing environments. Processing and analysis of genomic data is an example of a big data application requiring complex interdependent data analysis workflows. Such bioinformatics workflows take the primary and secondary input data through several computationally-intensive processing steps using different software packages, where some of the outputs form inputs for other steps. Implementing scalable, reproducible, portable and easy-to-use workflows is particularly challenging. RESULTS: H3ABioNet has built four workflows to support (1) the calling of variants from high-throughput sequencing data; (2) the analysis of microbial populations from 16S rDNA sequence data; (3) genotyping and genome-wide association studies; and (4) single nucleotide polymorphism imputation. A week-long hackathon was organized in August 2016 with participants from six African bioinformatics groups, and US and European collaborators. Two of the workflows are built using the Common Workflow Language framework (CWL) and two using Nextflow. All the workflows are containerized for improved portability and reproducibility using Docker, and are publicly available for use by members of the H3Africa consortium and the international research community. CONCLUSION: The H3ABioNet workflows have been implemented in view of offering ease of use for the end user and high levels of reproducibility and portability, all while following modern state of the art bioinformatics data processing protocols. The H3ABioNet workflows will service the H3Africa consortium projects and are currently in use. All four workflows are also publicly available for research scientists worldwide to use and adapt for their respective needs. The H3ABioNet workflows will help develop bioinformatics capacity and assist genomics research within Africa and serve to increase the scientific output of H3Africa and its Pan-African Bioinformatics Network.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , África , Humanos , Reproducibilidad de los Resultados
16.
Sci Rep ; 8(1): 5078, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29567959

RESUMEN

There are limited data on meconium and faecal bacterial profiles from African infants and their mothers. We characterized faecal bacterial communities of infants and mothers participating in a South African birth cohort. Stool and meconium specimens were collected from 90 mothers and 107 infants at birth, and from a subset of 72 and 36 infants at 4-12 and 20-28 weeks of age, respectively. HIV-unexposed infants were primarily exclusively breastfed at 4-12 (49%, 26/53) and 20-28 weeks (62%, 16/26). In contrast, HIV-exposed infants were primarily exclusively formula fed at 4-12 (53%; 10/19) and 20-28 weeks (70%, 7/10). Analysis (of the bacterial 16S rRNA gene sequences of the V4 hypervariable region) of the 90 mother-infant pairs showed that meconium bacterial profiles [dominated by Proteobacteria (89%)] were distinct from those of maternal faeces [dominated by Firmicutes (66%) and Actinobacteria (15%)]. Actinobacteria predominated at 4-12 (65%) and 20-28 (50%) weeks. HIV-exposed infants had significantly higher faecal bacterial diversities at both 4-12 (p = 0.026) and 20-28 weeks (p = 0.002). HIV-exposed infants had lower proportions of Bifidobacterium (p = 0.010) at 4-12 weeks. Maternal faecal bacterial profiles were influenced by HIV status, feeding practices and mode of delivery. Further longitudinal studies are required to better understand how these variables influence infant and maternal faecal bacterial composition.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal/genética , Infecciones por VIH/microbiología , Meconio/microbiología , Adulto , Bifidobacterium/genética , Bifidobacterium/aislamiento & purificación , Lactancia Materna , Heces/virología , Conducta Alimentaria , Femenino , Firmicutes/genética , Firmicutes/aislamiento & purificación , VIH/genética , VIH/patogenicidad , Infecciones por VIH/genética , Infecciones por VIH/virología , Humanos , Lactante , Fórmulas Infantiles/microbiología , Recién Nacido , Meconio/virología , Madres , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Sudáfrica/epidemiología
17.
AAS Open Res ; 1: 9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-32382696

RESUMEN

The need for portable and reproducible genomics analysis pipelines is growing globally as well as in Africa, especially with the growth of collaborative projects like the Human Health and Heredity in Africa Consortium (H3Africa). The Pan-African H3Africa Bioinformatics Network (H3ABioNet) recognized the need for portable, reproducible pipelines adapted to heterogeneous compute environments, and for the nurturing of technical expertise in workflow languages and containerization technologies. To address this need, in 2016 H3ABioNet arranged its first Cloud Computing and Reproducible Workflows Hackathon, with the purpose of building key genomics analysis pipelines able to run on heterogeneous computing environments and meeting the needs of H3Africa research projects. This paper describes the preparations for this hackathon and reflects upon the lessons learned about its impact on building the technical and scientific expertise of African researchers. The workflows developed were made publicly available in GitHub repositories and deposited as container images on quay.io.

18.
Infect Immun ; 86(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29038128

RESUMEN

Young African females are at an increased risk of HIV acquisition, and genital inflammation or the vaginal microbiome may contribute to this risk. We studied these factors in 168 HIV-negative South African adolescent females aged 16 to 22 years. Unsupervised clustering of 16S rRNA gene sequences revealed three clusters (subtypes), one of which was strongly associated with genital inflammation. In a multivariate model, the microbiome compositional subtype and hormonal contraception were significantly associated with genital inflammation. We identified 40 taxa significantly associated with inflammation, including those reported previously (Prevotella, Sneathia, Aerococcus, Fusobacterium, and Gemella) as well as several novel taxa (including increased frequencies of bacterial vaginosis-associated bacterium 1 [BVAB1], BVAB2, BVAB3, Prevotella amnii, Prevotella pallens, Parvimonas micra, Megasphaera, Gardnerella vaginalis, and Atopobium vaginae and decreased frequencies of Lactobacillus reuteri, Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners). Women with inflammation-associated microbiomes had significantly higher body mass indices and lower levels of endogenous estradiol and luteinizing hormone. Community functional profiling revealed three distinct vaginal microbiome subtypes, one of which was characterized by extreme genital inflammation and persistent bacterial vaginosis (BV); this subtype could be predicted with high specificity and sensitivity based on the Nugent score (≥9) or BVAB1 abundance. We propose that women with this BVAB1-dominated subtype may have chronic genital inflammation due to persistent BV, which may place them at a particularly high risk for HIV infection.


Asunto(s)
Genitales/microbiología , Inflamación/microbiología , Infecciones del Sistema Genital/microbiología , Vaginosis Bacteriana/microbiología , Adolescente , Femenino , Infecciones por VIH/microbiología , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética , Adulto Joven
19.
Nat Commun ; 8(1): 2062, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233967

RESUMEN

The Southern African Human Genome Programme is a national initiative that aspires to unlock the unique genetic character of southern African populations for a better understanding of human genetic diversity. In this pilot study the Southern African Human Genome Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique variants are identified. Despite the shallow time depth since divergence between the two main southeastern Bantu-speaking groups (Nguni and Sotho-Tswana), principal component analysis and structure analysis reveal significant (p < 10-6) differentiation, and FST analysis identifies regions with high divergence. The Coloured individuals show evidence of varying proportions of admixture with Khoesan, Bantu-speakers, Europeans, and populations from the Indian sub-continent. Whole-genome sequencing data reveal extensive genomic diversity, increasing our understanding of the complex and region-specific history of African populations and highlighting its potential impact on biomedical research and genetic susceptibility to disease.


Asunto(s)
Población Negra/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Genoma Humano , Análisis Mutacional de ADN/métodos , Voluntarios Sanos , Humanos , Masculino , Mutación/genética , Proyectos Piloto , Análisis de Componente Principal , Sudáfrica
20.
PLoS Comput Biol ; 13(6): e1005419, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28570565

RESUMEN

The H3ABioNet pan-African bioinformatics network, which is funded to support the Human Heredity and Health in Africa (H3Africa) program, has developed node-assessment exercises to gauge the ability of its participating research and service groups to analyze typical genome-wide datasets being generated by H3Africa research groups. We describe a framework for the assessment of computational genomics analysis skills, which includes standard operating procedures, training and test datasets, and a process for administering the exercise. We present the experiences of 3 research groups that have taken the exercise and the impact on their ability to manage complex projects. Finally, we discuss the reasons why many H3ABioNet nodes have declined so far to participate and potential strategies to encourage them to do so.


Asunto(s)
Población Negra/genética , Bases de Datos Genéticas , Genómica/métodos , Sistemas de Administración de Bases de Datos , Países en Desarrollo , Humanos , Nigeria , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...