Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 30(19): 4608-4629, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34260775

RESUMEN

Oceanographic features such as currents, waves, temperature and salinity, together with life history traits, control patterns and rates of gene flow and contribute to shaping the population genetic structure of marine organisms. Seascape genetics is an emerging discipline that adopts a spatially explicit approach to examine biotic and abiotic factors that drive gene flow in marine environments. In this study, we examined factors that contribute to genetic differentiation in two coastal Mediterranean gastropods whose geographical ranges overlap but which inhabit different environments. The two species differ in several life history traits and in their dispersal capabilities. Genetic differentiation was relatively low for the trochid species Gibbula divaricata (FST  =0.059), and high for the vermetid species Dendropoma lebeche (FST  =0.410). Salinity emerged as the most important variable explaining the genetic structure of both species; sea surface temperature was also important for G. divaricata. For the more sessile D. lebeche, the coastline was predicted to provide important pathways for stepping-stone connectivity and gene flow. Our results provide a greater understanding of the factors influencing marine population connectivity, which may be useful to guide marine conservation and management in the Mediterranean.


Asunto(s)
Gastrópodos , Flujo Génico , Animales , Gastrópodos/genética , Variación Genética , Genética de Población , Mar Mediterráneo , Oceanografía
2.
Ecol Appl ; 31(3): e02254, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33159398

RESUMEN

Ecological niche models (ENMs) have classically operated under the simplifying assumptions that there are no barriers to gene flow, species are genetically homogeneous (i.e., no population-specific local adaptation), and all individuals share the same niche. Yet, these assumptions are violated for most broadly distributed species. Here, we incorporate genetic data from the widespread riparian tree species narrowleaf cottonwood (Populus angustifolia) to examine whether including intraspecific genetic variation can alter model performance and predictions of climate change impacts. We found that (1) P. angustifolia is differentiated into six genetic groups across its range from México to Canada and (2) different populations occupy distinct climate niches representing unique ecotypes. Comparing model discriminatory power, (3) all genetically informed ecological niche models (gENMs) outperformed the standard species-level ENM (3-14% increase in AUC; 1-23% increase in pROC). Furthermore, (4) gENMs predicted large differences among ecotypes in both the direction and magnitude of responses to climate change and (5) revealed evidence of niche divergence, particularly for the Eastern Rocky Mountain ecotype. (6) Models also predicted progressively increasing fragmentation and decreasing overlap between ecotypes. Contact zones are often hotspots of diversity that are critical for supporting species' capacity to respond to present and future climate change, thus predicted reductions in connectivity among ecotypes is of conservation concern. We further examined the generality of our findings by comparing our model developed for a higher elevation Rocky Mountain species with a related desert riparian cottonwood, P. fremontii. Together our results suggest that incorporating intraspecific genetic information can improve model performance by addressing this important source of variance. gENMs bring an evolutionary perspective to niche modeling and provide a truly "adaptive management" approach to support conservation genetic management of species facing global change.


Asunto(s)
Cambio Climático , Ecosistema , Populus/genética , Adaptación Fisiológica , Canadá , México
3.
Conserv Physiol ; 8(1): coaa061, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685164

RESUMEN

Populus fremontii (Fremont cottonwood) is recognized as one of the most important foundation tree species in the southwestern USA and northern Mexico because of its ability to structure communities across multiple trophic levels, drive ecosystem processes and influence biodiversity via genetic-based functional trait variation. However, the areal extent of P. fremontii cover has declined dramatically over the last century due to the effects of surface water diversions, non-native species invasions and more recently climate change. Consequently, P. fremontii gallery forests are considered amongst the most threatened forest types in North America. In this paper, we unify four conceptual areas of genes to ecosystems research related to P. fremontii's capacity to survive or even thrive under current and future environmental conditions: (i) hydraulic function related to canopy thermal regulation during heat waves; (ii) mycorrhizal mutualists in relation to resiliency to climate change and invasion by the non-native tree/shrub, Tamarix; (iii) phenotypic plasticity as a mechanism for coping with rapid changes in climate; and (iv) hybridization between P. fremontii and other closely related Populus species where enhanced vigour of hybrids may preserve the foundational capacity of Populus in the face of environmental change. We also discuss opportunities to scale these conceptual areas from genes to the ecosystem level via remote sensing. We anticipate that the exploration of these conceptual areas of research will facilitate solutions to climate change with a foundation species that is recognized as being critically important for biodiversity conservation and could serve as a model for adaptive management of arid regions in the southwestern USA and around the world.

4.
Mol Ecol ; 28(24): 5232-5247, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31647597

RESUMEN

Spatial genetic patterns are influenced by numerous factors, and they can vary even among coexisting, closely related species due to differences in dispersal and selection. Eucalyptus (L'Héritier 1789; the "eucalypts") are foundation tree species that provide essential habitat and modulate ecosystem services throughout Australia. Here we present a study of landscape genomic variation in two woodland eucalypt species, using whole-genome sequencing of 388 individuals of Eucalyptus albens and Eucalyptus sideroxylon. We found exceptionally high genetic diversity (π ≈ 0.05) and low genome-wide, interspecific differentiation (FST  = 0.15) and intraspecific differentiation between localities (FST  ≈ 0.01-0.02). We found no support for strong, discrete population structure, but found substantial support for isolation by geographic distance (IBD) in both species. Using generalized dissimilarity modelling, we identified additional isolation by environment (IBE). Eucalyptus albens showed moderate IBD, and environmental variables have a small but significant amount of additional predictive power (i.e. IBE). Eucalyptus sideroxylon showed much stronger IBD and moderate IBE. These results highlight the vast adaptive potential of these species and set the stage for testing evolutionary hypotheses of interspecific adaptive differentiation across environments.


Asunto(s)
Ecosistema , Eucalyptus/genética , Variación Genética/genética , Selección Genética , Australia , Eucalyptus/crecimiento & desarrollo , Bosques , Flujo Génico , Genética de Población , Genoma de Planta/genética , Genómica , Árboles/genética , Árboles/crecimiento & desarrollo
5.
Mol Ecol ; 26(19): 5114-5132, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28779535

RESUMEN

Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to understand how geography and climate influence genetic connectivity in a foundation riparian tree (Populus angustifolia), and their relationships with specieswide patterns of genetic diversity and differentiation. Using multivariate restricted optimization in a reciprocal causal modelling framework, we quantified the relative contributions of riparian network connectivity, terrestrial upland resistance and climate gradients on genetic connectivity. We found that (i) all riparian corridors, regardless of river order, equally facilitated connectivity, while terrestrial uplands provided 2.5× more resistance to gene flow than riparian corridors. (ii) Cumulative differences in precipitation seasonality and precipitation of the warmest quarter were the primary climatic factors driving genetic differentiation; furthermore, maximum climate resistance was 45× greater than riparian resistance. (iii) Genetic diversity was positively correlated with connectivity (R2  = 0.3744, p = .0019), illustrating the utility of resistance models for identifying landscape conditions that can support a species' ability to adapt to environmental change. From these results, we present a map highlighting key genetic connectivity corridors across P. angustifolia's range that if disrupted could have long-term ecological and evolutionary consequences. Our findings provide recommendations for conservation and restoration management of threatened riparian ecosystems throughout the western USA and the high biodiversity they support.


Asunto(s)
Ecosistema , Flujo Génico , Variación Genética , Populus/genética , Ríos , Clima , Conservación de los Recursos Naturales , Genética de Población , Geografía , Modelos Genéticos , Estados Unidos
6.
Ecology ; 97(2): 494-502, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27145623

RESUMEN

The latitudinal herbivory-defense hypothesis (LHDH) predicts that plants near the equator will be more heavily defended against herbivores than are plants at higher latitudes. Although this idea is widely found in the literature, recent studies have called this biogeographic pattern into question. We sought to evaluate the LHDH in a high-latitude terrestrial ecosystem where fire and mammalian herbivores may contribute to selection for higher levels of defensive chemistry. To address this objective, we collected seeds of Alaska paper birch (Betula neoalaskana) from nine locations along two north-south transects between 55 degrees N and 62 degrees N latitudes in western, interior Canada. The birch seeds were planted in pots in a common garden in Madison, Wisconsin, USA. From the resulting seedlings, we determined levels of chemical defense by assessing the density of resin glands, which have been shown to be negatively correlated with browsing. To assess plant architectural traits such as height, mean individual leaf area, and root-to-shoot ratio, we harvested a subset of the birch seedlings. Further, we used these traits to examine growth-defense trade-offs. Contrary to the LHDH, we found a positive correlation between chemical defense and latitude. Investigating relationships with fire, we found a strong positive correlation between resin gland density and percentage of area annually burned (PAAB) around each collection location and also between PAAB and latitude. Additionally, birch seedlings originating from higher latitudes were shorter, smaller-leaved, and rootier than their lower-latitude counterparts. Growth-defense trade-offs were observed in negative correlations between resin gland density and height and leaf size. Seedlings with higher resin gland densities also allocated less biomass to shoots and more to roots. These results further call into question the LHDH and provide specific information about latitudinal trends in plant defense at high, northern latitudes where fire is a major ecosystem driver and mammals are the main herbivores of deciduous trees such as birches. We propose that these interconnected relationships are the key drivers of the positive correlation between defense and latitude in B. neoalaskana. Understanding patterns of boreal plant defense and growth is especially important because high latitude ecosystems are particularly susceptible to climate change. Key words: Alaska paper birch; Betula neoalaskana; biogeography; chemical defense; grotvth-defense trade-offs; inherent growth rate; latitude; latitudinal herbivory-defense hypothesis; papyr'feric acid; plant ar- chitecture; resin glands; root-to-shoot ratio.


Asunto(s)
Betula/metabolismo , Fitoquímicos/metabolismo , Alberta , Animales , Colombia Británica , Demografía , Ecosistema , Liebres/fisiología , Herbivoria , Territorios del Noroeste
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...