Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AoB Plants ; 11(4): plz031, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31281620

RESUMEN

Arabidopsis thaliana (Arabidopsis) seeds are myxospermous and release two layers of mucilage on imbibition. The outer layer can be extracted with water facilitating the analysis of its major constituent, polysaccharides. The composition and properties of outer mucilage have been determined for 306 natural accessions and six control genotypes to generate a data set comprising six traits measured in four biological replicates for each. Future exploitation of this data is possible in a range of analyses and should yield information concerning genetic diversity, underlying genetic factors and the biological function of mucilage as an adaptive trait.

2.
PLoS One ; 14(12): e0227011, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31891625

RESUMEN

Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in maize. We demonstrated that allele replacement in two pairs of near-isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall degradability led to phenotypic variation of a similar magnitude and sign to that expected from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines, we annotated the genes present in the QTL interval and provided evidence that allelic variation at the introgressed QTL region gives rise to coordinated changes in gene expression. The identification of a gene co-expression network associated with cell wall-related trait variation revealed that the favorable F288 alleles exploit biological processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone responses. Nested in modules of co-expressed genes, potential new cell-wall regulators were identified, including two transcription factors of the group VII ethylene response factor family, that could be exploited to fine-tune cell wall degradability. Overall, these findings provide new insights into the regulatory mechanisms by which a major locus influences cell wall degradability, paving the way for its map-based cloning in maize.


Asunto(s)
Alimentación Animal , Pared Celular/metabolismo , Redes Reguladoras de Genes , Sitios de Carácter Cuantitativo , Zea mays/genética , Alelos , Pared Celular/genética , Celulosa/metabolismo , Mapeo Cromosómico , Conjuntos de Datos como Asunto , Genoma de Planta , Peróxido de Hidrógeno/metabolismo , Lignina/metabolismo , Oxidación-Reducción , Fitomejoramiento , Plantas Modificadas Genéticamente , Pliegue de Proteína , RNA-Seq , Biología de Sistemas , Zea mays/citología
3.
Genetics ; 203(3): 1353-67, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27182945

RESUMEN

Species differentiation and the underlying genetics of reproductive isolation are central topics in evolutionary biology. Hybrid sterility is one kind of reproductive barrier that can lead to differentiation between species. Here, we analyze the complex genetic basis of the intraspecific hybrid male sterility that occurs in the offspring of two distant natural strains of Arabidopsis thaliana, Shahdara and Mr-0, with Shahdara as the female parent. Using both classical and quantitative genetic approaches as well as cytological observation of pollen viability, we demonstrate that this particular hybrid sterility results from two causes of pollen mortality. First, the Shahdara cytoplasm induces gametophytic cytoplasmic male sterility (CMS) controlled by several nuclear loci. Second, several segregation distorters leading to allele-specific pollen abortion (pollen killers) operate in hybrids with either cytoplasm. The complete sterility of the hybrid with the Shahdara cytoplasm results from the genetic linkage of the two causes of pollen mortality, i.e., CMS nuclear determinants and pollen killers. Furthermore, natural variation at these loci in A. thaliana is associated with different male-sterility phenotypes in intraspecific hybrids. Our results suggest that the genomic conflicts that underlie segregation distorters and CMS can concurrently lead to reproductive barriers between distant strains within a species. This study provides a new framework for identifying molecular mechanisms and the evolutionary history of loci that contribute to reproductive isolation, and possibly to speciation. It also suggests that two types of genomic conflicts, CMS and segregation distorters, may coevolve in natural populations.


Asunto(s)
Arabidopsis/genética , Evolución Biológica , Infertilidad Vegetal/genética , Polen/genética , Arabidopsis/crecimiento & desarrollo , Cromosomas de las Plantas/genética , Citoplasma/genética , Citoplasma/patología , Ligamiento Genético , Genómica , Hibridación Genética , Polen/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Aislamiento Reproductivo
4.
Plant Physiol ; 171(1): 165-78, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26979331

RESUMEN

Arabidopsis (Arabidopsis thaliana) seed coat epidermal cells produce large amounts of mucilage that is released upon imbibition. This mucilage is structured into two domains: an outer diffuse layer that can be easily removed by agitation and an inner layer that remains attached to the outer seed coat. Both layers are composed primarily of pectic rhamnogalacturonan I (RG-I), the inner layer also containing rays of cellulose that extend from the top of each columella. Perturbation in cellulosic ray formation has systematically been associated with a redistribution of pectic mucilage from the inner to the outer layer, in agreement with cellulose-pectin interactions, the nature of which remained unknown. Here, by analyzing the outer layer composition of a series of mutant alleles, a tight proportionality of xylose, galacturonic acid, and rhamnose was evidenced, except for mucilage modified5-1 (mum5-1; a mutant showing a redistribution of mucilage pectin from the inner adherent layer to the outer soluble one), for which the rhamnose-xylose ratio was increased drastically. Biochemical and in vitro binding assay data demonstrated that xylan chains are attached to RG-I chains and mediate the adsorption of mucilage to cellulose microfibrils. mum5-1 mucilage exhibited very weak adsorption to cellulose. MUM5 was identified as a putative xylosyl transferase recently characterized as MUCI21. Together, these findings suggest that the binding affinity of xylose ramifications on RG-I to a cellulose scaffold is one of the factors involved in the formation of the adherent mucilage layer.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Mucílago de Planta/genética , Mucílago de Planta/metabolismo , Semillas/metabolismo , Xilanos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/química , Celulosa/metabolismo , Análisis por Conglomerados , Genes de Plantas , Ligamiento Genético , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ácidos Hexurónicos/metabolismo , Mutación , Pectinas/química , Pectinas/metabolismo , Extractos Vegetales/química , Mucílago de Planta/química , Ramnosa/metabolismo , Semillas/enzimología , Análisis de Secuencia de ADN , Coloración y Etiquetado , Xilanos/química , Xilosa/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(13): 3687-92, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26979961

RESUMEN

Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Adaptación Fisiológica , Evolución Biológica , Núcleo Celular/genética , Núcleo Celular/fisiología , Citoplasma/genética , Citoplasma/fisiología , Epistasis Genética , Aptitud Genética , Variación Genética , Genoma de Planta , Fenotipo
6.
PLoS Genet ; 10(3): e1004221, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24625826

RESUMEN

Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 ß-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Semillas/crecimiento & desarrollo , beta-Galactosidasa/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Evolución Molecular , Espectroscopía de Resonancia Magnética , Mutación , Mucílago de Planta/genética , Semillas/genética , Agua/química , Agua/metabolismo
7.
Plant Cell ; 25(1): 308-23, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23362209

RESUMEN

Imbibed seeds of the Arabidopsis thaliana accession Djarly are affected in mucilage release from seed coat epidermal cells. The impaired locus was identified as a pectin methylesterase inhibitor gene, PECTIN METHYLESTERASE INHIBITOR6 (PMEI6), specifically expressed in seed coat epidermal cells at the time when mucilage polysaccharides are accumulated. This spatio-temporal regulation appears to be modulated by GLABRA2 and LEUNIG HOMOLOG/MUCILAGE MODIFIED1, as expression of PMEI6 is reduced in mutants of these transcription regulators. In pmei6, mucilage release was delayed and outer cell walls of epidermal cells did not fragment. Pectin methylesterases (PMEs) demethylate homogalacturonan (HG), and the majority of HG found in wild-type mucilage was in fact derived from outer cell wall fragments. This correlated with the absence of methylesterified HG labeling in pmei6, whereas transgenic plants expressing the PMEI6 coding sequence under the control of the 35S promoter had increased labeling of cell wall fragments. Activity tests on seeds from pmei6 and 35S:PMEI6 transgenic plants showed that PMEI6 inhibits endogenous PME activities, in agreement with reduced overall methylesterification of mucilage fractions and demucilaged seeds. Another regulator of PME activity in seed coat epidermal cells, the subtilisin-like Ser protease SBT1.7, acts on different PMEs, as a pmei6 sbt1.7 mutant showed an additive phenotype.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Pectinas/metabolismo , Epidermis de la Planta/enzimología , Mucílago de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Esterificación , Metilación , Mutación , Pectinas/análisis , Fenotipo , Epidermis de la Planta/genética , Mucílago de Planta/análisis , Plantas Modificadas Genéticamente , Semillas/enzimología , Semillas/genética , Subtilisinas/genética , Subtilisinas/metabolismo
8.
Plant J ; 69(6): 1094-101, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22077701

RESUMEN

One of the main strengths of Arabidopsis thaliana as a model species is the impressive number of public resources available to the scientific community. Exploring species genetic diversity--and therefore adaptation--relies on collections of individuals from natural populations taken from diverse environments. Nevertheless, due to a few mislabeling events or genotype mixtures, some variants available in stock centers have been misidentified, causing inconsistencies and limiting the potential of genetic analyses. To improve the identification of natural accessions, we genotyped 1311 seed stocks from our Versailles Arabidopsis Stock Center and from other collections to determine their molecular profiles at 341 single nucleotide polymorphism markers. These profiles were used to compare genotypes at both the intra- and inter-accession levels. We confirmed previously described inconsistencies and revealed new ones, and suggest likely identities for accessions whose lineage had been lost. We also developed two new tools: a minimal fingerprint computation to quickly verify the identity of an accession, and an optimized marker set to assist in the identification of unknown or mixed accessions. These tools are available on a dedicated web interface called ANATool (https://www.versailles.inra.fr/ijpb/crb/anatool) that provides a simple and efficient means to verify or determine the identity of A. thaliana accessions in any laboratory, without the need for any specific or expensive technology.


Asunto(s)
Arabidopsis/clasificación , Biología Computacional/métodos , Dermatoglifia del ADN/métodos , ADN de Plantas/genética , Genoma de Planta , Técnicas de Genotipaje/métodos , Arabidopsis/genética , Análisis por Conglomerados , Biología Computacional/normas , Dermatoglifia del ADN/normas , Marcadores Genéticos , Genotipo , Técnicas de Genotipaje/normas , Internet , Polimorfismo de Nucleótido Simple , Selección Genética , Interfaz Usuario-Computador
9.
PLoS One ; 6(5): e20243, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21633512

RESUMEN

On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes imparted no apparent modification to ABA production on water deficit, were inherited recessively and enhanced ABA responses indicating that the proteins encoded are negative regulators of ABA signalling. All three mutants showed ABA-hypersensitive stomata closure and inhibition of root elongation with little modification of growth and development in non-stressed conditions. The has2 mutant also exhibited increased germination inhibition by ABA, while ABA-inducible gene expression was not modified on dehydration, indicating the mutated gene affects early ABA-signalling responses that do not modify transcript levels. In contrast, weak ABA-hypersensitivity relative to mutant developmental phenotypes suggests that HAS3 regulates drought responses by both ABA-dependent and independent pathways. has1 mutant phenotypes were only apparent on stress or ABA treatments, and included reduced water loss on rapid dehydration. The HAS1 locus thus has the required characteristics for a targeted approach to improving resistance to water deficit. In contrast to has2, has1 exhibited only minor changes in susceptibility to Dickeya dadantii despite similar ABA-hypersensitivity, indicating that crosstalk between ABA responses to this pathogen and drought stress can occur through more than one point in the signalling pathway.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Enterobacteriaceae/fisiología , Mutación , Agua/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura
10.
Plant J ; 50(5): 810-24, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17470058

RESUMEN

A novel abscisic acid (ABA)-deficient mutant, aba4, was identified in a screen for paclobutrazol-resistant germination. Compared with wild-type, the mutant showed reduced endogenous ABA levels in both dehydrated rosettes and seeds. Carotenoid composition analysis demonstrated that the defective locus affects neoxanthin synthesis. The ABA4 gene was identified by map-based cloning, and found to be a unique gene in the Arabidopsis genome. The predicted protein has four putative helical transmembrane domains and shows significant similarity to predicted proteins from tomato, rice and cyanobacteria. Constitutive expression of the ABA4 gene in Arabidopsis transgenic plants led to increased accumulation of trans-neoxanthin, indicating that the ABA4 protein has a direct role in neoxanthin synthesis. aba4 mutant phenotypes were mild compared with previously identified ABA-deficient mutants that exhibit vegetative tissue phenotypes. Indeed, ABA levels in seeds of aba4 mutants were higher than those of aba1 mutants. As aba1 mutants are also affected in a unique gene, this suggests that ABA can be produced in the aba4 mutant by an alternative pathway using violaxanthin as a substrate. It appears, therefore, that in Arabidopsis both violaxanthin and neoxanthin are in vivo substrates for 9-cis-epoxycarotenoid dioxygenases. Furthermore, significantly reduced levels of ABA were synthesized in the aba4 mutant on dehydration, demonstrating that ABA biosynthesis in response to stress must occur mainly via neoxanthin isomer precursors.


Asunto(s)
Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Carotenoides/genética , Mutación , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Secuencia Conservada , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Eliminación de Gen , Genotipo , Cinética , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA