Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 379(6636): 996-1003, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893255

RESUMEN

Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment.


Asunto(s)
Metabolismo de los Hidratos de Carbono , L-Lactato Deshidrogenasa , Metaboloma , Humanos , Ácidos Grasos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Especificidad de Órganos , Espectrometría de Masas/métodos , Regulación Alostérica
2.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36256480

RESUMEN

Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS's ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of ß-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While ß-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved ß-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor ß-catenin activation mutations and a compromised urea cycle.


Asunto(s)
Glutamato-Amoníaco Ligasa , Neoplasias Hepáticas , Animales , Ratones , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Amoníaco/metabolismo , Nitrógeno/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Glutamina/metabolismo , Homeostasis , Urea/metabolismo
3.
Sci Adv ; 8(39): eabq0117, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36179030

RESUMEN

The fate of pyruvate is a defining feature in many cell types. One major fate is mitochondrial entry via the mitochondrial pyruvate carrier (MPC). We found that diffuse large B cell lymphomas (DLBCLs) consume mitochondrial pyruvate via glutamate-pyruvate transaminase 2 to enable α-ketoglutarate production as part of glutaminolysis. This led us to discover that glutamine exceeds pyruvate as a carbon source for the tricarboxylic acid cycle in DLBCLs. As a result, MPC inhibition led to decreased glutaminolysis in DLBCLs, opposite to previous observations in other cell types. We also found that MPC inhibition or genetic depletion decreased DLBCL proliferation in an extracellular matrix (ECM)-like environment and xenografts, but not in a suspension environment. Moreover, the metabolic profile of DLBCL cells in ECM is markedly different from cells in a suspension environment. Thus, we conclude that the synergistic consumption and assimilation of glutamine and pyruvate enables DLBCL proliferation in an extracellular environment-dependent manner.

4.
Trends Biochem Sci ; 46(5): 348-350, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33618948

RESUMEN

Recently, three groups, Girardi et al., Kory et al., and Luongo et al., independently identified solute carrier (SLC) 25A51 as the long-sought, major mitochondrial NAD+ transporter in mammalian cells. These studies not only deorphan an uncharacterized transporter of the SLC25A family, but also shed light on other aspects of NAD+ biology.


Asunto(s)
NAD , Nitrazepam , Animales , Transporte Biológico , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Nitrazepam/metabolismo
5.
Cell Metab ; 33(3): 629-648.e10, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333007

RESUMEN

The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Cardiomegalia/patología , Insuficiencia Cardíaca/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Animales , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Anión/genética , Cardiomegalia/inducido químicamente , Cardiomegalia/complicaciones , Insuficiencia Cardíaca/etiología , Corazón Auxiliar , Humanos , Ácido Láctico/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/antagonistas & inhibidores , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ácido Pirúvico/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Función Ventricular Izquierda/fisiología
6.
FASEB J ; 34(8): 10574-10589, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32568455

RESUMEN

Cancer cells require extensive metabolic reprograming in order to provide the bioenergetics and macromolecular precursors needed to sustain a malignant phenotype. Mutant KRAS is a driver oncogene that is well-known for its ability to regulate the ERK and PI3K signaling pathways. However, it is now appreciated that KRAS can promote the tumor growth via upregulation of anabolic metabolism. We recently reported that oncogenic KRAS promotes a gene expression program of de novo lipogenesis in non-small cell lung cancer (NSCLC). To define the mechanism(s) responsible, we focused on the lipogenic transcription factor SREBP1. We observed that KRAS increases SREBP1 expression and genetic knockdown of SREBP1 significantly inhibited the cell proliferation of mutant KRAS-expressing cells. Unexpectedly, lipogenesis was not significantly altered in cells subject to SREBP1 knockdown. Carbon tracing metabolic studies showed a significant decrease in oxidative phosphorylation and RNA-seq data revealed a significant decrease in mitochondrial encoded subunits of the electron transport chain (ETC). Taken together, these data support a novel role, distinct from lipogenesis, of SREBP1 on mitochondrial function in mutant KRAS NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocondrias/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Lipogénesis/genética , Neoplasias Pulmonares/genética , Mutación/genética , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/genética , Regulación hacia Arriba/genética
7.
PLoS Comput Biol ; 16(1): e1007625, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004313

RESUMEN

Ribosome profiling, an application of nucleic acid sequencing for monitoring ribosome activity, has revolutionized our understanding of protein translation dynamics. This technique has been available for a decade, yet the current state and standardization of publicly available computational tools for these data is bleak. We introduce XPRESSyourself, an analytical toolkit that eliminates barriers and bottlenecks associated with this specialized data type by filling gaps in the computational toolset for both experts and non-experts of ribosome profiling. XPRESSyourself automates and standardizes analysis procedures, decreasing time-to-discovery and increasing reproducibility. This toolkit acts as a reference implementation of current best practices in ribosome profiling analysis. We demonstrate this toolkit's performance on publicly available ribosome profiling data by rapidly identifying hypothetical mechanisms related to neurodegenerative phenotypes and neuroprotective mechanisms of the small-molecule ISRIB during acute cellular stress. XPRESSyourself brings robust, rapid analysis of ribosome-profiling data to a broad and ever-expanding audience and will lead to more reproducible and accessible measurements of translation regulation. XPRESSyourself software is perpetually open-source under the GPL-3.0 license and is hosted at https://github.com/XPRESSyourself, where users can access additional documentation and report software issues.


Asunto(s)
Biología Computacional/métodos , ARN/genética , Ribosomas/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Bases de Datos Genéticas , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Internet , Biosíntesis de Proteínas/genética , Reproducibilidad de los Resultados
8.
Cell Metab ; 31(2): 284-300.e7, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31813825

RESUMEN

Although metabolic adaptations have been demonstrated to be essential for tumor cell proliferation, the metabolic underpinnings of tumor initiation are poorly understood. We found that the earliest stages of colorectal cancer (CRC) initiation are marked by a glycolytic metabolic signature, including downregulation of the mitochondrial pyruvate carrier (MPC), which couples glycolysis and glucose oxidation through mitochondrial pyruvate import. Genetic studies in Drosophila suggest that this downregulation is required because hyperplasia caused by loss of the Apc or Notch tumor suppressors in intestinal stem cells can be completely blocked by MPC overexpression. Moreover, in two distinct CRC mouse models, loss of Mpc1 prior to a tumorigenic stimulus doubled the frequency of adenoma formation and produced higher grade tumors. MPC loss was associated with a glycolytic metabolic phenotype and increased expression of stem cell markers. These data suggest that changes in cellular pyruvate metabolism are necessary and sufficient to promote cancer initiation.


Asunto(s)
Adenoma/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ácido Pirúvico/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Drosophila , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Cell Rep ; 29(5): 1287-1298.e6, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665640

RESUMEN

Glutamine is thought to play an important role in cancer cells by being deaminated via glutaminolysis to α-ketoglutarate (aKG) to fuel the tricarboxylic acid (TCA) cycle. Supporting this notion, aKG supplementation can restore growth/survival of glutamine-deprived cells. However, pancreatic cancers are often poorly vascularized and limited in glutamine supply, in alignment with recent concerns on the significance of glutaminolysis in pancreatic cancer. Here, we show that aKG-mediated rescue of glutamine-deprived pancreatic ductal carcinoma (PDAC) cells requires glutamate ammonia ligase (GLUL), the enzyme responsible for de novo glutamine synthesis. GLUL-deficient PDAC cells are capable of the TCA cycle but defective in aKG-coupled glutamine biosynthesis and subsequent nitrogen anabolic processes. Importantly, GLUL expression is elevated in pancreatic cancer patient samples and in mouse PDAC models. GLUL ablation suppresses the development of KrasG12D-driven murine PDAC. Therefore, GLUL-mediated glutamine biosynthesis couples the TCA cycle with nitrogen anabolism and plays a critical role in PDAC.


Asunto(s)
Carbono/metabolismo , Glutamina/metabolismo , Nitrógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Eliminación de Gen , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología
10.
Cancers (Basel) ; 11(6)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167399

RESUMEN

Metabolic programs are known to be altered in cancers arising from various tissues. Malignant transformation can alter signaling pathways related to metabolism and increase the demand for both energy and biomass for the proliferating cancerous cells. This scenario is further complexed by the crosstalk between transformed cells and the microenvironment. One of the most common metabolic alterations, which occurs in many tissues and in the context of multiple oncogenic drivers, is the increased demand for the amino acid glutamine. Many studies have attributed this increased demand for glutamine to the carbon backbone and its role in the tricarboxylic acid (TCA) cycle anaplerosis. However, an increasing number of studies are now emphasizing the importance of glutamine functioning as a proteogenic building block, a nitrogen donor and carrier, an exchanger for import of other amino acids, and a signaling molecule. Herein, we highlight the recent literature on glutamine's versatile role in cancer, with a focus on nitrogen metabolism, and therapeutic implications of glutamine metabolism in cancer.

12.
Mol Cell ; 61(5): 720-733, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942676

RESUMEN

TRIM21 is a RING finger domain-containing ubiquitin E3 ligase whose expression is elevated in autoimmune disease. While TRIM21 plays an important role in immune activation during pathogen infection, little is known about its inherent cellular function. Here we show that TRIM21 plays an essential role in redox regulation by directly interacting with SQSTM1/p62 and ubiquitylating p62 at lysine 7 (K7) via K63-linkage. As p62 oligomerizes and sequesters client proteins in inclusions, the TRIM21-mediated p62 ubiquitylation abrogates p62 oligomerization and sequestration of proteins including Keap1, a negative regulator of antioxidant response. TRIM21-deficient cells display an enhanced antioxidant response and reduced cell death in response to oxidative stress. Genetic ablation of TRIM21 in mice confers protection from oxidative damages caused by arsenic-induced liver insult and pressure overload heart injury. Therefore, TRIM21 plays an essential role in p62-regulated redox homeostasis and may be a viable target for treating pathological conditions resulting from oxidative damage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Choque Térmico/metabolismo , Estrés Oxidativo , Ribonucleoproteínas/metabolismo , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trióxido de Arsénico , Arsenicales , Muerte Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Proteínas de Choque Térmico/genética , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Hígado/enzimología , Hígado/patología , Lisina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/enzimología , Miocardio/patología , Oxidación-Reducción , Óxidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Interferencia de ARN , Ribonucleoproteínas/deficiencia , Ribonucleoproteínas/genética , Proteína Sequestosoma-1 , Transducción de Señal , Factores de Tiempo , Transfección
13.
Bio Protoc ; 6(19)2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31380466

RESUMEN

Glutamine synthetase (GS), which catalyzes the conversion of glutamate and ammonia to glutamine, is widely distributed in animal tissues and cell culture lines. The importance of this enzyme is suggested by the fact that glutamine, the product of GS-catalyzed de novo synthesis reaction, is the most abundant free amino acid in blood (Smith and Wilmore, 1990). Glutamine is involved in many biological processes including serving as the nitrogen donor for biosynthesis, as an exchanger for the import of essential amino acids, as a means to detoxifying intracellular ammonia and glutamate, and as a bioenergetics nutrient to fuel the tricarboxylic acid (TCA) cycle (Bott et al.,2015). The method for the assay of GS enzymatic activity relies on its γ-glutamyl transferase reaction by measuring γ-glutamylhydroxamate synthesized from glutamine and hydroxylamine, and the chromatographic separation of the reaction product from the reactants (Deuel et al., 1978). An overview of the GS glutamyl transferase reaction can be found in Figure 1. GS activity was measured by a spectrophotometric assay at a specific wavelength of 560 nm using a microplate reader. The method is simple, and has a comparable sensitivity with those methods applying radioactively labelled substrates. This modified procedure has been applied to assay/determine GS activity in cultured cell lines including the human mammary epithelial MCF10A cells and the murine pre-B FL5.12 cells, and could be used to measure GS activity in other cell lines.

14.
Cell Metab ; 22(6): 1068-77, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26603296

RESUMEN

c-Myc is known to promote glutamine usage by upregulating glutaminase (GLS), which converts glutamine to glutamate that is catabolized in the TCA cycle. Here we report that in a number of human and murine cells and cancers, Myc induces elevated expression of glutamate-ammonia ligase (GLUL), also termed glutamine synthetase (GS), which catalyzes the de novo synthesis of glutamine from glutamate and ammonia. This is through upregulation of a Myc transcriptional target thymine DNA glycosylase (TDG), which promotes active demethylation of the GS promoter and its increased expression. Elevated expression of GS promotes cell survival under glutamine limitation, while silencing of GS decreases cell proliferation and xenograft tumor growth. Upon GS overexpression, increased glutamine enhances nucleotide synthesis and amino acid transport. These results demonstrate an unexpected role of Myc in inducing glutamine synthesis and suggest a molecular connection between DNA demethylation and glutamine metabolism in Myc-driven cancers.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Femenino , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/genética , Ácido Glutámico/metabolismo , Humanos , Ratones , Ratones Desnudos , Nucleótidos/biosíntesis , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
15.
Cancer Res ; 74(21): 6318-29, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25213322

RESUMEN

The serine/cysteine protease inhibitor SCCA1 (SERPINB3) is upregulated in many advanced cancers with poor prognosis, but there is limited information about whether it makes functional contributions to malignancy. Here, we show that SCCA1 expression promoted oncogenic transformation and epithelial-mesenchymal transition (EMT) in mammary epithelial cells, and that SCCA1 silencing in breast cancer cells halted their proliferation. SCCA1 overexpression in neu(+) mammary tumors increased the unfolded protein response (UPR), IL6 expression, and inflammatory phenotypes. Mechanistically, SCCA1 induced a prolonged nonlethal increase in the UPR that was sufficient to activate NF-κB and expression of the protumorigenic cytokine IL6. Overall, our findings established that SCCA1 contributes to tumorigenesis by promoting EMT and a UPR-dependent induction of NF-κB and IL6 autocrine signaling that promotes a protumorigenic inflammation.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Neoplasias de la Mama/genética , Interleucina-6/biosíntesis , Serpinas/biosíntesis , Respuesta de Proteína Desplegada/genética , Antígenos de Neoplasias/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , FN-kappa B/biosíntesis , Serpinas/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...