Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282283

RESUMEN

The trachea is essential for proper airflow to the lungs for gas exchange. Frequent congenital tracheal malformations affect the cartilage, causing the collapse of the central airway during the respiratory cycle. We have shown that Notum, a Wnt ligand de-acylase that attenuates the canonical branch of the Wnt signaling pathway, is necessary for cartilaginous mesenchymal condensations. In Notum deficient tracheas, chondrogenesis is delayed, and the tracheal lumen is narrowed. It is unknown if Notum attenuates non-canonical Wnt signaling. Notably, we observed premature tracheal chondrogenesis after mesenchymal deletion of the non-canonical Wnt5a ligand. We hypothesize that Notum and Wnt5a are required to mediate the timely formation of mesenchymal condensations, giving rise to the tracheal cartilage. Ex vivo culture of tracheal tissue shows that chemical inhibition of the Wnt non-canonical pathway promotes earlier condensations, while Notum inhibition presents delayed condensations. Furthermore, non-canonical Wnt induction prevents the formation of cartilaginous mesenchymal condensations. On the other hand, cell-cell interactions among chondroblasts increase in the absence of mesenchymal Wnt5a. By performing an unbiased analysis of the gene expression in Wnt5a and Notum deficient tracheas, we detect that mRNA of genes essential for chondrogenesis and extracellular matrix formation are upregulated by E11.5 in Wnt5a mutants. The expression profile supports the premature and delayed chondrogenesis observed in Wnt5a and Notum deficient tracheas, respectively. We conclude that Notum and Wnt5a are necessary for proper tracheal cartilage patterning by coordinating timely chondrogenesis. Thus, these studies shed light on molecular mechanisms underlying congenital anomalies of the trachea.

2.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L788-L802, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37873566

RESUMEN

Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wntless (Wls), a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulates the expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and ß-catenin-deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/ß-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.NEW & NOTEWORTHY Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. In this study, we focused on the role of ion channels in the differentiation and patterning of the large airways of the developing respiratory tract. We identify a mechanism by which Wnt-beta-catenin signaling controls levels of ion channel-encoding genes to promote tracheal differentiation.


Asunto(s)
Tráquea , Vía de Señalización Wnt , Ratones , Animales , Vía de Señalización Wnt/genética , Tráquea/metabolismo , beta Catenina/genética , Músculo Liso/metabolismo , Canales de Potasio/metabolismo , Cartílago/metabolismo
3.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36711918

RESUMEN

Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wls, a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulated expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and ß-catenin deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/ß-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.

4.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L224-L242, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851738

RESUMEN

Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/ß-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/ß-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Morfogénesis , Tráquea/embriología , Tráquea/metabolismo , Vía de Señalización Wnt , Animales , Proteína Morfogenética Ósea 4/deficiencia , Proteína Morfogenética Ósea 4/genética , Diferenciación Celular , Proliferación Celular , Condrogénesis/genética , Epitelio/metabolismo , Esterasas/genética , Esterasas/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Ligandos , Ratones , Ratones Noqueados , Células 3T3 NIH , Fenotipo , Regiones Promotoras Genéticas/genética
5.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G518-G530, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905021

RESUMEN

Intestinal-fatty acid binding protein (IFABP; FABP2) is a 15-kDa intracellular protein abundantly present in the cytosol of the small intestinal (SI) enterocyte. High-fat (HF) feeding of IFABP-/- mice resulted in reduced weight gain and fat mass relative to wild-type (WT) mice. Here, we examined intestinal properties that may underlie the observed lean phenotype of high fat-fed IFABP-/- mice. No alterations in fecal lipid content were found, suggesting that the IFABP-/- mice are not malabsorbing dietary fat. However, the total excreted fecal mass, normalized to food intake, was increased for the IFABP-/- mice relative to WT mice. Moreover, intestinal transit time was more rapid in the IFABP-/- mice. IFABP-/- mice displayed a shortened average villus length, a thinner muscularis layer, reduced goblet cell density, and reduced Paneth cell abundance. The number of proliferating cells in the crypts of IFABP-/- mice did not differ from that of WT mice, suggesting that the blunt villi phenotype is not due to alterations in proliferation. IFABP-/- mice were observed to have altered expression of genes and proteins related to intestinal structure, while immunohistochemical analyses revealed increased staining for markers of inflammation. Taken together, these studies indicate that the ablation of IFABP, coupled with high-fat feeding, leads to changes in gut motility and morphology, which likely contribute to the relatively leaner phenotype occurring at the whole-body level. Thus, IFABP is likely involved in dietary lipid sensing and signaling, influencing intestinal motility, intestinal structure, and nutrient absorption, thereby impacting systemic energy metabolism.NEW & NOTEWORTHY Intestinal fatty acid binding protein (IFABP) is thought to be essential for the efficient uptake and trafficking of dietary fatty acids. In this study, we demonstrate that high-fat-fed IFABP-/- mice have an increased fecal output and are likely malabsorbing other nutrients in addition to lipid. Furthermore, we observe that the ablation of IFABP leads to marked alterations in intestinal morphology and secretory cell abundance.


Asunto(s)
Adiposidad , Dieta Alta en Grasa , Proteínas de Unión a Ácidos Grasos/deficiencia , Motilidad Gastrointestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Aumento de Peso , Animales , Muerte Celular , Defecación , Metabolismo Energético , Enterocitos/metabolismo , Enterocitos/patología , Proteínas de Unión a Ácidos Grasos/genética , Heces/química , Eliminación de Gen , Genotipo , Absorción Intestinal , Mucosa Intestinal/patología , Mucosa Intestinal/fisiopatología , Intestino Delgado/patología , Intestino Delgado/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Factores de Tiempo
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(12): 1587-1594, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28919479

RESUMEN

Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.


Asunto(s)
Proliferación Celular/fisiología , Enterocitos/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Células CACO-2 , Proteínas de Unión a Ácidos Grasos/genética , Ácidos Grasos/genética , Humanos
7.
Mediators Inflamm ; 2015: 738563, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26346822

RESUMEN

Celiac disease (CD) is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs): intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs' expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa.


Asunto(s)
Enfermedad Celíaca/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Duodeno/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Humanos , Intestino Delgado/metabolismo , PPAR gamma/metabolismo , ARN Mensajero/genética
8.
Biochim Biophys Acta ; 1841(1): 141-50, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24148314

RESUMEN

Intestinal fatty acid-binding protein (IFABP) is highly expressed in the intestinal epithelium and it belongs to the family of soluble lipid binding proteins. These proteins are thought to participate in most aspects of the biology of lipids, regulating its availability for specific metabolic pathways, targeting and vectorial trafficking of lipids to specific subcellular compartments. The present study is based on the ability of IFABP to interact with phospholipid membranes, and we characterized its immersion into the bilayer's hydrophobic central region occupied by the acyl-chains. We constructed a series of Trp-mutants of IFABP to selectively probe the interaction of different regions of the protein, particularly the elements forming the portal domain that is proposed to regulate the exit and entry of ligands to/from the binding cavity. We employed several fluorescent techniques based on selective quenching induced by soluble or membrane confined agents. The results indicate that the portal region of IFABP penetrates deeply into the phospholipid bilayer, especially when CL-containing vesicles are employed. The orientation of the protein and the degree of penetration were highly dependent on the lipid composition, the superficial net charge and the ionic strength of the medium. These results may be relevant to understand the mechanism of ligand transfer and the specificity responsible for the unique functions of each member of the FABP family.


Asunto(s)
Membrana Celular/química , Proteínas de Unión a Ácidos Grasos/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Sustitución de Aminoácidos , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Mutación Missense , Fosfolípidos/genética , Fosfolípidos/metabolismo , Estructura Terciaria de Proteína , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA