Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915718

RESUMEN

Background: The incidence of Barrett esophagus (BE) and Gastroesophageal Adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BA) support fat digestion and undergo microbial metabolization in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. The capacity of inhibiting cancer-related processes when activated, make FXR an appealing therapeutic target. In this work, we assess the role of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression. Results: Here we show that high fat diet (HFD) accelerated tumorigenesis in L2-IL1B mice (BE- and GEAC- mouse model) while increasing BA levels and enriching gut microbiota that convert primary to secondary BA. While upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine organoids and L2-IL1B mice with the FXR agonist obeticholic acid (OCA) deacelerated GEAC progression. Conclusion: We provide a novel concept of GEAC carcinogenesis being accelerated via the diet-microbiome-metabolome axis and FXR inhibition on progenitor cells. Further, FXR activation protected with OCA ameliorated the phenotype in vitro and in vivo, suggesting that FXR agonists have potential as differentiation therapy in GEAC prevention. Statement of significance: If its inhibition is linked to disease progression and its activation to cancer prevention, exploring the potential of FXR as a therapeutic target has great clinical relevance in GEAC context.

2.
JHEP Rep ; 6(6): 101065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38798717

RESUMEN

Background & Aims: Atezolizumab/bevacizumab (atezo/bev) and lenvatinib have demonstrated efficacy as first-line therapies for hepatocellular carcinoma (HCC). However, vascular endothelial growth factor (VEGF) inhibition with these therapies may be associated with the risk of bleeding and thromboembolic events. In this study, we evaluated the efficacy and safety with focus on the bleeding and thromboembolic events of atezo/bev vs. lenvatinib in a large, multicenter real-world population. Methods: This study is based on HCC cohorts from seven centers in Germany and Austria. Incidences of bleeding or thromboembolic events and efficacy outcomes were assessed and compared. Results: In total, 464 patients treated with atezo/bev (n = 325) or lenvatinib (n = 139) were analyzed. Both groups were balanced with respect to demographics, presence of liver cirrhosis, and variceal status. Duration of therapy did not differ between groups. Within 3 months of therapy, bleeding episodes were described in 57 (18%) patients receiving atezo/bev compared with 15 (11%) patients receiving lenvatinib (p = 0.07). Variceal hemorrhage occurred in 11 (3%) patients treated with atezo/bev compared with 4 (3%) patients treated with lenvatinib (p = 0.99). Thromboembolic events were reported in 19 (6%) of patients in the atezo/bev cohort compared with 5 (4%) patients in the lenvatinib cohort (p = 0.37). In addition, incidence of overall bleeding, variceal hemorrhage, and thromboembolic events did not differ significantly in patients who received either atezo/bev or lenvantinib for 6 months. Conclusions: Safety considerations related to bleeding and thromboembolic events may not be helpful in guiding clinical decision-making when choosing between atezo/bev and lenvatinib. Impact and implications: The inhibition of VEGF by current first-line therapies for HCC, such as atezolizumab/bevacizumab or lenvatinib, may be associated with the risk of bleeding and thromboembolic events. Studies comparing the incidence of these side effects between atezolizumab/bevacizumab and lenvatinib, which are preferred treatments over sorafenib for HCC, are needed. Differences in this side effect profile may influence the choice of first-line therapy by treating physicians. Because no significant differences were observed regarding bleeding or thromboembolic events between both therapies in the present study, we conclude that safety considerations related to these events may not be helpful in guiding clinical decision-making when choosing between atezolizumab/bevacizumab and lenvatinib.

3.
J Immunol ; 210(10): 1508-1518, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37000470

RESUMEN

Secondary Ig diversification in B cells requires the deliberate introduction of DNA damage into the Ig genes by the enzyme activation-induced cytidine deaminase (AID) and the error-prone resolution of AID-induced lesions. These processes must be tightly regulated because they may lead to lymphomagenesis if they act on genes other than the Ig genes. Since B cells may limit secondary Ig diversification mechanisms during the cell cycle to minimize genomic instability, we restricted the activity of AID specifically to the G1 or S/G2 phase to investigate the cell cycle contribution to the regulation of somatic hypermutation, class switch recombination, and Ig gene conversion in human, murine, and avian B cells, respectively. The efficient induction of AID in different cell cycle phases allowed us for the first time, to our knowledge, to discriminate G1- from S/G2-specific events of regulation. We show that the processes of Ig gene conversion and C/G mutagenesis during somatic hypermutation can be achieved throughout the cell cycle, whereas A/T mutagenesis and class switch recombination require AID-mediated deamination in G1. Thus, AID activity in G1, but not in S/G2, leads to the efficient accomplishment of all mechanisms of secondary Ig diversification. Our findings refine the current state-of-the-art knowledge in the context of the regulation of secondary Ig diversification.


Asunto(s)
Genes de Inmunoglobulinas , Cambio de Clase de Inmunoglobulina , Ratones , Animales , Humanos , Ciclo Celular , Linfocitos B/metabolismo , Mutagénesis , Citidina Desaminasa/genética , Hipermutación Somática de Inmunoglobulina
4.
Materials (Basel) ; 15(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36556801

RESUMEN

Ultrashort pulse laser processing can result in the secondary generation of unwanted X-rays if a critical laser irradiance of about 1013 W cm-2 is exceeded. Spectral X-ray emissions were investigated during the processing of tungsten and steel using three complementary spectrometers (based on CdTe and silicon drift detectors) simultaneously for the identification of a worst-case spectral scenario. Therefore, maximum X-ray photon energies were determined, and corresponding dose equivalent rates were calculated. An ultrashort pulse laser workstation with a pulse duration of 274 fs, a center wavelength of 1030 nm, pulse repetition rates between 50 kHz and 200 kHz, and a Gaussian laser beam focused to a spot diameter of 33 µm was employed in a single pulse and burst laser operation mode. Different combinations of laser pulse energy and repetition rate were utilized, keeping the average laser power constant close to the maximum power of 20 W. Peak irradiances I0 ranging from 7.3 × 1013 W cm-2 up to 3.0 × 1014 W cm-2 were used. The X-ray dose equivalent rate increases for lower repetition rates and higher pulse energy if a constant average power is used. Laser processing with burst mode significantly increases the dose rates and the X-ray photon energies. A maximum X-ray photon energy of about 40 keV was observed for burst mode processing of tungsten with a repetition rate of 50 kHz and a peak irradiance of 3 × 1014 W cm-2.

5.
Mol Immunol ; 138: 128-136, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34392111

RESUMEN

p53 plays a major role in genome maintenance. In addition to multiple p53 functions in the control of DNA repair, a regulation of DNA damage bypass via translesion synthesis has been implied in vitro. Somatic hypermutation of immunoglobulin genes for affinity maturation of antibody responses is based on aberrant translesion polymerase action and must be subject to stringent control to prevent genetic alterations and lymphomagenesis. When studying the role of p53 in somatic hypermutation in vivo, we found altered translesion polymerase-mediated A:T mutagenesis in mice lacking p53 in all organs, but notably not in mice with B cell-specific p53 inactivation, implying that p53 functions in non-B cells may alter mutagenesis in B cells. During class switch recombination, when p53 prevents formation of chromosomal translocations, we in addition detected a B cell-intrinsic role for p53 in altering G:C and A:T mutagenesis. Thus, p53 regulates translesion polymerase activity and shows differential activity during somatic hypermutation versus class switch recombination in vivo. Finally, p53 inhibition leads to increased somatic hypermutation in human B lymphoma cells. We conclude that loss of p53 function may promote genetic instability via multiple routes during antibody diversification in vivo.


Asunto(s)
Cambio de Clase de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/genética , Proteína p53 Supresora de Tumor/fisiología , Animales , Humanos , Ratones , Mutagénesis/genética
6.
Viruses ; 13(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546489

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprises mild courses of disease as well as progression to severe disease, characterised by lung and other organ failure. The immune system is considered to play a crucial role for the pathogenesis of COVID-19, although especially the contribution of innate-like T cells remains poorly understood. Here, we analysed the phenotype and function of mucosal-associated invariant T (MAIT) cells, innate-like T cells with potent antimicrobial effector function, in patients with mild and severe COVID-19 by multicolour flow cytometry. Our data indicate that MAIT cells are highly activated in patients with COVID-19, irrespective of the course of disease, and express high levels of proinflammatory cytokines such as IL-17A and TNFα ex vivo. Of note, expression of the activation marker HLA-DR positively correlated with SAPS II score, a measure of disease severity. Upon MAIT cell-specific in vitro stimulation, MAIT cells however failed to upregulate expression of the cytokines IL-17A and TNFα, as well as cytolytic proteins, that is, granzyme B and perforin. Thus, our data point towards an altered cytokine expression profile alongside an impaired antibacterial and antiviral function of MAIT cells in COVID-19 and thereby contribute to the understanding of COVID-19 immunopathogenesis.


Asunto(s)
COVID-19/inmunología , Activación de Linfocitos , Células T Invariantes Asociadas a Mucosa/inmunología , Inmunidad Adaptativa , COVID-19/fisiopatología , Citocinas/metabolismo , Femenino , Granzimas/metabolismo , Antígenos HLA-DR , Humanos , Interleucina-17/metabolismo , Células Asesinas Naturales/inmunología , Masculino , Células T Invariantes Asociadas a Mucosa/metabolismo , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
7.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G543-G556, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406006

RESUMEN

Tumor stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation, and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hepatic stellate cell (hHSC) proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Data mining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumor grading, and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumor-promoting interactions between hHSC and HCC.NEW & NOTEWORTHY HCC is marked by genetic heterogeneity and activated hepatic stellate cells (HSC) are considered key players during HCC development. The paracrine effect of different HCC cell lines on the activation of primary hHSC was accompanied by differential AMPK activation depending on the HCC line used. Pharmacological treatment inhibited the HCC-induced hHSC activation through AMPK-dependent and AMPK-independent mechanisms. This heterogenic effect on HCC-induced AMPK activation was confirmed by data mining TCGA and LICA-FR databases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Aminoimidazol Carboxamida/análogos & derivados , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Activadores de Enzimas/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Comunicación Paracrina , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Ribonucleótidos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/farmacología , Animales , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Medios de Cultivo Condicionados , Bases de Datos Genéticas , Activación Enzimática , Células Hep G2 , Células Estrelladas Hepáticas/enzimología , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mutación , Fosforilación , Transducción de Señal , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , beta Catenina/genética
8.
Int J Artif Organs ; 44(4): 288-294, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32985328

RESUMEN

A substantial part of COVID-19-patients suffers from multi-organ failure (MOF). We report on an 80-year old patient with pulmonary, renal, circulatory, and hepatic failure. We decided against the use of extracorporeal membrane oxygenation (ECMO) due to old age and a SOFA-score of 13. However, the patient was continuously treated with the extracorporeal multi-organ- "ADVanced Organ Support" (ADVOS) device (ADVITOS GmbH, Munich, Germany). During eight 24h-treatment-sessions blood flow (100-300 mL/min), dialysate flow (160-320 mL/min) and dialysate pH (7.6-9.0) were adapted to optimize arterial PaCO2 and pH. Effective CO2 removal and correction of acidosis could be demonstrated by mean arterial- versus post-dialyzer values of pCO2 (68.7 ± 13.8 vs. 26.9 ± 11.6 mmHg; p < 0.001). The CO2-elimination rate was 48 ± 23mL/min. The initial vasopressor requirement could be reduced in parallel to pH-normalization. Interruptions of ADVOS-treatment repeatedly resulted in reversible deteriorations of paCO2 and pH. After 95 h of continuous extracorporeal decarboxylating therapy the patient had markedly improved circulatory parameters compared to baseline. In the context of secondary pulmonary infection and progressive liver failure, the patient had a sudden cardiac arrest. In accordance with the presumed patient will, we decided against mechanical resuscitation. Irrespective of the outcome we conclude that extracorporeal CO2 removal and multiorgan-support were feasible in this COVID-19-patient. Combined and less invasive approaches such as ADVOS might be considered in old-age-COVID-19 patients with MOF.


Asunto(s)
COVID-19/terapia , Circulación Extracorporea/métodos , Insuficiencia Multiorgánica/terapia , Anciano de 80 o más Años , COVID-19/sangre , Dióxido de Carbono/sangre , Humanos , Insuficiencia Multiorgánica/sangre
9.
J Immunol ; 203(6): 1493-1501, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31399517

RESUMEN

During somatic hypermutation (SHM) of Ig genes in germinal center B cells, lesions introduced by activation-induced cytidine deaminase are processed by multiple error-prone repair pathways. Although error-free repair by homologous recombination (HR) is crucial to prevent excessive DNA strand breakage at activation-induced cytidine deaminase off-target genes, its role at the hypermutating Ig locus in the germinal center is unexplored. Using B cell-specific inactivation of the critical HR factor Brca2, we detected decreased proliferation, survival, and thereby class switching of ex vivo-activated B cells. Intriguingly, an HR defect allowed for a germinal center reaction and affinity maturation in vivo, albeit at reduced amounts. Analysis of SHM revealed that a certain fraction of DNA lesions at C:G bp was indeed repaired in an error-free manner via Brca2 instead of being processed by error-prone translesion polymerases. By applying a novel pseudo-time in silico analysis of mutational processes, we found that the activity of A:T mutagenesis during SHM increased during a germinal center reaction, but this was in part defective in Brca2-deficient mice. These mutation pattern changes in Brca2-deficient B cells were mostly specific for the Ig V region, suggesting a local or time-dependent need for recombination repair to survive high rates of SHM and especially A:T mutagenesis.


Asunto(s)
Centro Germinal/fisiología , Recombinación Homóloga/genética , Mutación/genética , Animales , Linfocitos B/fisiología , Proteína BRCA2/genética , Citidina Desaminasa/genética , ADN/genética , Daño del ADN/genética , Femenino , Genes de Inmunoglobulinas/genética , Activación de Linfocitos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Hipermutación Somática de Inmunoglobulina/genética
10.
Cells ; 9(1)2019 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905709

RESUMEN

An altered liver microenvironment characterized by a dysregulated extracellular matrix (ECM) supports the development and progression of hepatocellular carcinoma (HCC). The development of experimental platforms able to reproduce these physio-pathological conditions is essential in order to identify and validate new therapeutic targets for HCC. The aim of this work was to validate a new in vitro model based on engineering three-dimensional (3D) healthy and cirrhotic human liver scaffolds with HCC cells recreating the micro-environmental features favoring HCC. Healthy and cirrhotic human livers ECM scaffolds were developed using a high shear stress oscillation-decellularization procedure. The scaffolds bio-physical/bio-chemical properties were analyzed by qualitative and quantitative approaches. Cirrhotic 3D scaffolds were characterized by biomechanical properties and microarchitecture typical of the native cirrhotic tissue. Proteomic analysis was employed on decellularized 3D scaffolds and showed specific enriched proteins in cirrhotic ECM in comparison to healthy ECM proteins. Cell repopulation of cirrhotic scaffolds highlighted a unique up-regulation in genes related to epithelial to mesenchymal transition (EMT) and TGFß signaling. This was also supported by the presence and release of higher concentration of endogenous TGFß1 in cirrhotic scaffolds in comparison to healthy scaffolds. Fibronectin secretion was significantly upregulated in cells grown in cirrhotic scaffolds in comparison to cells engrafted in healthy scaffolds. TGFß1 induced the phosphorylation of canonical proteins Smad2/3, which was ECM scaffold-dependent. Important, TGFß1-induced phosphorylation of Smad2/3 was significantly reduced and ECM scaffold-independent when pre/simultaneously treated with the TGFß-R1 kinase inhibitor Galunisertib. In conclusion, the inherent features of cirrhotic human liver ECM micro-environment were dissected and characterized for the first time as key pro-carcinogenic components in HCC development.


Asunto(s)
Transición Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Proteínas Smad/metabolismo , Andamios del Tejido , Factor de Crecimiento Transformador beta1/metabolismo , Bioingeniería , Carcinoma Hepatocelular/etiología , Colágeno/metabolismo , Humanos , Inmunohistoquímica , Cirrosis Hepática/etiología , Fosforilación , Proteómica , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
11.
Hepatology ; 68(3): 1140-1153, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29663481

RESUMEN

Liver fibrosis and cirrhosis are characterized by activation of hepatic stellate cells (HSCs), which is associated with higher intracellular pH (pHi). The vacuolar H+ adenosine-triphosphatase (v-ATPase) multisubunit complex is a key regulator of pHi homeostasis. The present work investigated the functional role of v-ATPase in primary human HSC (hHSC) activation and its modulation by specific adenosine monophosphate-activated protein kinase (AMPK) subunits. We demonstrate that the expression of different v-ATPase subunits was increased in in vivo and in vitro activated hHSCs compared to nonactivated hHSCs. Specific inhibition of v-ATPase with bafilomycin and KM91104 induced a down-regulation of the HSC fibrogenic gene profile, which coincided with increased lysosomal pH, decreased pHi, activation of AMPK, reduced proliferation, and lower metabolic activity. Similarly, pharmacological activation of AMPK by treatment with diflunisal, A769662, and ZLN024 reduced the expression of v-ATPase subunits and profibrogenic markers. v-ATPase expression was differently regulated by the AMPK α1 subunit (AMPKα1) and AMPKα2, as demonstrated in mouse embryo fibroblasts specifically deficient for AMPK α subunits. In addition, activation of v-ATPase in hHSCs was shown to be AMPKα1-dependent. Accordingly, pharmacological activation of AMPK in AMPKα1-depleted hHSCs prevented v-ATPase down-regulation. Finally, we showed that v-ATPase expression was increased in fibrotic livers from bile duct-ligated mice and in human cirrhotic livers. CONCLUSION: The down-regulation of v-ATPase might represent a promising target for the development of antifibrotic strategies. (Hepatology 2018).


Asunto(s)
Células Estrelladas Hepáticas/enzimología , Cirrosis Hepática/etiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones Endogámicos BALB C
12.
Hepatology ; 68(1): 172-186, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29328499

RESUMEN

Autoimmune liver diseases (AILDs) are chronic liver pathologies characterized by fibrosis and cirrhosis due to immune-mediated liver damage. In this study, we addressed the question whether mucosal-associated invariant T (MAIT) cells, innate-like T cells, are functionally altered in patients with AILD and whether MAIT cells can promote liver fibrosis through activation of hepatic stellate cells (HSCs). We analyzed the phenotype and function of MAIT cells from AILD patients and healthy controls by multicolor flow cytometry and investigated the interaction between human MAIT cells and primary human hepatic stellate cells (hHSCs). We show that MAIT cells are significantly decreased in peripheral blood and liver tissue of patients with AILD. Notably, MAIT cell frequency tended to decrease with increasing fibrosis stage. MAIT cells from AILD patients showed signs of exhaustion, such as impaired interferon-γ (IFN-γ) production and high ex vivo expression of the activation and exhaustion markers CD38, HLA-DR, and CTLA-4. Mechanistically, this exhausted state could be induced by repetitive stimulation of MAIT cells with the cytokines interleukin (IL)-12 and IL-18, leading to decreased IFN-γ and increased exhaustion marker expression. Of note, repetitive stimulation with IL-12 further resulted in expression of the profibrogenic cytokine IL-17A by otherwise exhausted MAIT cells. Accordingly, MAIT cells from both healthy controls and AILD patients were able to induce an activated, proinflammatory and profibrogenic phenotype in hHSCs in vitro that was partly mediated by IL-17. CONCLUSION: Our data provide evidence that MAIT cells in AILD patients have evolved towards an exhausted, profibrogenic phenotype and can contribute to the development of HSC-mediated liver fibrosis. These findings reveal a cellular and molecular pathway for fibrosis development in AILD that could be exploited for antifibrotic therapy. (Hepatology 2018;68:172-186).


Asunto(s)
Enfermedades Autoinmunes/inmunología , Células Estrelladas Hepáticas/fisiología , Cirrosis Hepática/inmunología , Células T Invariantes Asociadas a Mucosa/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Muerte Celular , Femenino , Humanos , Interleucinas/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
13.
Gut ; 67(8): 1517-1524, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28779025

RESUMEN

OBJECTIVE: Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. DESIGN: We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. RESULTS: We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10-9). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. CONCLUSION: We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene.


Asunto(s)
Colangitis Esclerosante/genética , Colangitis Esclerosante/patología , Polimorfismo de Nucleótido Simple/genética , Trombospondinas/genética , Adulto , Colangitis Esclerosante/mortalidad , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Modelos Logísticos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales
14.
Sci Rep ; 7(1): 5514, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28717244

RESUMEN

The TRAIL pathway can mediate apoptosis of hepatic stellate cells to promote the resolution of liver fibrosis. However, TRAIL has the capacity to bind to regulatory receptors in addition to death-inducing receptors; their differential roles in liver fibrosis have not been investigated. Here we have dissected the contribution of regulatory TRAIL receptors to apoptosis resistance in primary human hepatic stellate cells (hHSC). hHSC isolated from healthy margins of liver resections from different donors expressed variable levels of TRAIL-R2/3/4 (but negligible TRAIL-R1) ex vivo and after activation. The apoptotic potential of TRAIL-R2 on hHSC was confirmed by lentiviral-mediated knockdown. A functional inhibitory role for TRAIL-R3/4 was revealed by shRNA knockdown and mAb blockade, showing that these regulatory receptors limit apoptosis of hHSC in response to both oligomerised TRAIL and NK cells. A close inverse ex vivo correlation between hHSC TRAIL-R4 expression and susceptibility to apoptosis underscored its central regulatory role. Our data provide the first demonstration of non-redundant functional roles for the regulatory TRAIL receptors (TRAIL-R3/4) in a physiological setting. The potential for these inhibitory TRAIL receptors to protect hHSC from apoptosis opens new avenues for prognostic and therapeutic approaches to the management of liver fibrosis.


Asunto(s)
Apoptosis , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Anticuerpos Monoclonales/inmunología , Apoptosis/efectos de los fármacos , Células Cultivadas , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Hígado/citología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Miembro 10c de Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Miembro 10c de Receptores del Factor de Necrosis Tumoral/genética , Miembro 10c de Receptores del Factor de Necrosis Tumoral/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Receptores Señuelo del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores Señuelo del Factor de Necrosis Tumoral/genética , Receptores Señuelo del Factor de Necrosis Tumoral/metabolismo
15.
Adv Drug Deliv Rev ; 121: 3-8, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28600202

RESUMEN

Liver fibrosis and cirrhosis resulting from long-standing liver damage represents a major health care burden worldwide. To date, there is no anti-fibrogenic agent available, making liver transplantation the only curative treatment for decompensated cirrhotic liver disease. Liver fibrosis can result from different underlying chronic liver disease, such as chronic viral infection, excessive alcohol consumption, fatty liver disease or autoimmune liver diseases. It is becoming increasingly recognised that as a result from different pathogenic mechanisms liver fibrosis must be considered as many different diseases for which individual treatment strategies need to be developed. Moreover, the pathogenic changes of both liver architecture and vascularisation in cirrhotic livers, as well as the lack of "true-to-life" in vitro models have impeded the development of an effective anti-fibrogenic drug. Thus, in order to identify an efficient anti-fibrogenic compound, novel in-vitro models mimicking the interplay between pro-fibrogenic cell populations, immune cells and, importantly, the extracellular matrix need to be developed.


Asunto(s)
Diseño de Fármacos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/fisiopatología , Animales , Humanos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/fisiopatología
16.
Oncotarget ; 7(11): 13197-208, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921193

RESUMEN

Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.


Asunto(s)
Citidina Desaminasa/metabolismo , Linfoma/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/fisiología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Activación Enzimática/fisiología , Humanos , Linfoma/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
17.
DNA Repair (Amst) ; 24: 63-72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25311267

RESUMEN

During replication, bypass of DNA lesions is orchestrated by the Rad6 pathway. Monoubiquitination of proliferating cell nuclear antigen (PCNA) by Rad6/Rad18 leads to recruitment of translesion polymerases for direct and potentially mutagenic damage bypass. An error-free bypass pathway may be initiated via K63-linked PCNA polyubiquitination by Ubc13/Mms2 and the E3 ligase Rad5 in yeast, or HLTF/SHPRH in vertebrates. For the latter two enzymes, redundancy with a third E3 ligase and alternative functions have been reported. We have previously shown that the Rad6 pathway is involved in somatic hypermutation of immunoglobulin genes in B lymphocytes. Here, we have used knockout strategies targeting expression of the entire SHPRH protein or functionally significant domains in chicken DT40 cells that do not harbor a HLTF ortholog. We show that SHPRH is apparently redundant with another E3 ligase during DNA damage-induced PCNA modification. SHPRH plays no substantial role in cellular resistance to drugs initiating excision repair and the Rad6 pathway, but is important in survival of topoisomerase II inhibitor treatment. Removal of only the C-terminal RING domain does not interfere with this SHPRH function. SHPRH inactivation does not substantially impact on the overall efficacy of Ig diversification. Redundancy of E3 ligases in the Rad6 pathway may be linked to its different functions in genome maintenance and genetic plasticity.


Asunto(s)
Reparación del ADN/fisiología , Inmunoglobulinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular/efectos de los fármacos , Pollos , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Etopósido/farmacología , Técnicas de Inactivación de Genes , Inmunoglobulinas/genética , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
18.
Nucleic Acids Res ; 42(6): 3666-74, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24423870

RESUMEN

Immunoglobulin (Ig) diversification by somatic hypermutation in germinal center B cells is instrumental for maturation of the humoral immune response, but also bears the risk of excessive or aberrant genetic changes. Thus, introduction of DNA damage by activation-induced cytidine deaminase as well as DNA repair by multiple pathways need to be tightly regulated during the germinal center response to prevent lymphomagenesis. In the present study, we show that DNA damage checkpoint signaling via checkpoint kinase 1 (Chk1) negatively regulates somatic hypermutation. Chk1 inhibition in human B cell lymphoma lines as well as inactivation of Chk1 alleles by gene targeting in DT40 B cells leads to increased somatic hypermutation. This is apparently due to changes in DNA repair pathways regulated by Chk1, such as a decreased homologous recombination efficiency that also leads to decreased Ig gene conversion in DT40. Our data show that Chk1 signaling plays a crucial role in regulation of Ig diversification and sheds unexpected light on potential origins of aberrant somatic hypermutation in B cell lymphomagenesis.


Asunto(s)
Proteínas Quinasas/fisiología , Hipermutación Somática de Inmunoglobulina , Animales , Linfocitos B/inmunología , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación del ADN , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/genética
19.
Ann N Y Acad Sci ; 1075: 50-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17108191

RESUMEN

We have used the human ECV 304 cell line to study the origin and fate of extracellular RNA (exRNA) in cell culture. Quantification of different extracellular RNA species using reverse transcription followed by quantitative PCR revealed a prevalent fraction of ribosomal RNAs. Comparison of intracellular and extracellular ribosomal RNA copy numbers allowed the calculation of the number of destroyed cells that would result in the corresponding number of extracellular rRNAs. Interestingly, this number was comparable to the amount of destroyed cells as determined by the measurement of extracellular lactate dehydrogenase activity.


Asunto(s)
ARN Ribosómico 18S/metabolismo , ARN/metabolismo , Línea Celular Tumoral , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...