Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(11)2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37296615

RESUMEN

BACKGROUND: Schwann cells (SCs) are glial cells involved in peripheral axon myelination. SCs also play a strategic role after peripheral nerve injury, regulating local inflammation and axon regeneration. Our previous studies demonstrated the presence of cholinergic receptors in SCs. In particular, the α7 nicotinic acetylcholine receptors (nAChRs) are expressed in SCs after peripheral axotomy, suggesting their involvement in the regulation of SC-regenerating properties. To clarify the role that α7 nAChRs may play after peripheral axon damage, in this study we investigated the signal transduction pathways triggered by receptor activation and the effects produced by their activation. METHODS: Both ionotropic and metabotropic cholinergic signaling were analyzed by calcium imaging and Western blot analysis, respectively, following α7 nAChR activation. In addition, the expression of c-Jun and α7 nAChRs was evaluated by immunocytochemistry and Western blot analysis. Finally, the cell migration was studied by a wound healing assay. RESULTS: Activation of α7 nAChRs, activated by the selective partial agonist ICH3, did not induce calcium mobilization but positively modulated the PI3K/AKT/mTORC1 axis. Activation of the mTORC1 complex was also supported by the up-regulated expression of its specific p-p70 S6KThr389 target. Moreover, up-regulation of p-AMPKThr172, a negative regulator of myelination, was also observed concomitantly to an increased nuclear accumulation of the transcription factor c-Jun. Cell migration and morphology analyses proved that α7 nAChR activation also promotes SC migration. CONCLUSIONS: Our data demonstrate that α7 nAChRs, expressed by SCs only after peripheral axon damage and/or in an inflammatory microenvironment, contribute to improve the SCs regenerating properties. Indeed, α7 nAChR stimulation leads to an upregulation of c-Jun expression and promotes Schwann cell migration by non-canonical pathways involving the mTORC1 activity.


Asunto(s)
Axones , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Axones/metabolismo , Calcio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regeneración Nerviosa , Transducción de Señal/fisiología , Células de Schwann/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
2.
Life (Basel) ; 12(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35207498

RESUMEN

BACKGROUND: Schwann cells (SCs) express cholinergic receptors, suggesting a role of cholinergic signaling in the control of SC proliferation, differentiation and/or myelination. Our previous studies largely demonstrated that the pharmacological activation of the M2 muscarinic receptor subtype caused an inhibition of cell proliferation and promoted the expression of pro-myelinating differentiation genes. In order to elucidate the molecular signaling activated downstream the M2 receptor activation, in the present study we investigated the signal transduction pathways activated by the M2 orthosteric agonist arecaidine propargyl ester (APE) in SCs. METHODS: Using Western blot we analyzed some components of the noncanonical pathways involving ß1-arrestin and PI3K/AKT/mTORC1 signaling. A wound healing assay was used to evaluate SC migration. RESULTS: Our results demonstrated that M2 receptor activation negatively modulated the PI3K/Akt/mTORC1 axis, possibly through ß1-arrestin downregulation. The involvement of the mTORC1 complex was also supported by the decreased expression of its specific target p-p70 S6KThr389. Then, we also analyzed the expression of p-AMPKαthr172, a negative regulator of myelination that resulted in reduced levels after M2 agonist treatment. The analysis of cell migration and morphology allowed us to demonstrate that M2 receptor activation caused an arrest of SC migration and modified cell morphology probably by the modulation of ß1-arrestin/cofilin-1 and PKCα expression, respectively. CONCLUSIONS: The data obtained demonstrated that M2 receptor activation in addition to the canonical Gi protein-coupled pathway modulates noncanonical pathways involving the mTORC1 complex and other kinases whose activation may contribute to the inhibition of SC proliferation and migration and address SC differentiation.

3.
Int J Mol Sci ; 22(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071104

RESUMEN

Dorsal root ganglia (DRG) neurons synthesize acetylcholine (ACh), in addition to their peptidergic nature. They also release ACh and are cholinoceptive, as they express cholinergic receptors. During gangliogenesis, ACh plays an important role in neuronal differentiation, modulating neuritic outgrowth and neurospecific gene expression. Starting from these data, we studied the expression of choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) expression in rat DRG neurons. ChAT and VAChT genes are arranged in a "cholinergic locus", and several splice variants have been described. Using selective primers, we characterized splice variants of these cholinergic markers, demonstrating that rat DRGs express R1, R2, M, and N variants for ChAT and V1, V2, R1, and R2 splice variants for VAChT. Moreover, by RT-PCR analysis, we observed a progressive decrease in ChAT and VAChT transcripts from the late embryonic developmental stage (E18) to postnatal P2 and P15 and in the adult DRG. Interestingly, Western blot analyses and activity assays demonstrated that ChAT levels significantly increased during DRG ontogenesis. The modulated expression of different ChAT and VAChT splice variants during development suggests a possible differential regulation of cholinergic marker expression in sensory neurons and confirms multiple roles for ACh in DRG neurons, both in the embryo stage and postnatally.


Asunto(s)
Colina O-Acetiltransferasa/biosíntesis , Neuronas Colinérgicas/metabolismo , Ganglios Espinales/citología , Proteínas del Tejido Nervioso/biosíntesis , Células Receptoras Sensoriales/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/biosíntesis , Acetilcolina/metabolismo , Empalme Alternativo , Animales , Colina O-Acetiltransferasa/genética , Neuronas Colinérgicas/citología , Ganglios Espinales/embriología , Ganglios Espinales/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Neurogénesis , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Receptoras Sensoriales/citología , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...