Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 15(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667554

RESUMEN

This study investigated the incorporation of sources of calcium, phosphate, or both into electrospun scaffolds and evaluated their bioactivity on human dental pulp cells (HDPCs). Additionally, scaffolds incorporated with calcium hydroxide (CH) were characterized for degradation, calcium release, and odontogenic differentiation by HDPCs. Polycaprolactone (PCL) was electrospun with or without 0.5% w/v of calcium hydroxide (PCL + CH), nano-hydroxyapatite (PCL + nHA), or ß-glycerophosphate (PCL + ßGP). SEM/EDS analysis confirmed fibrillar morphology and particle incorporation. HDPCs were cultured on the scaffolds to assess cell viability, adhesion, spreading, and mineralized matrix formation. PCL + CH was also evaluated for gene expression of odontogenic markers (RT-qPCR). Data were submitted to ANOVA and Student's t-test (α = 5%). Added CH increased fiber diameter and interfibrillar spacing, whereas ßGP decreased both. PCL + CH and PCL + nHA improved HDPC viability, adhesion, and proliferation. Mineralization was increased eightfold with PCL + CH. Scaffolds containing CH gradually degraded over six months, with calcium release within the first 140 days. CH incorporation upregulated DSPP and DMP1 expression after 7 and 14 days. In conclusion, CH- and nHA-laden PCL fiber scaffolds were cytocompatible and promoted HDPC adhesion, proliferation, and mineralized matrix deposition. PCL + CH scaffolds exhibit a slow degradation profile, providing sustained calcium release and stimulating HDPCs to upregulate odontogenesis marker genes.

2.
J Funct Biomater ; 15(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667562

RESUMEN

This study aimed to develop gelatin methacryloyl (GelMA)-injectable hydrogels incorporated with 58S bioactive glass/BG-doped with strontium for vital pulp therapy applications. GelMA hydrogels containing 0% (control), 5%, 10%, and 20% BG (w/v) were prepared. Their morphological and chemical properties were evaluated by scanning electron microscopy/SEM, energy dispersive spectroscopy/EDS, and Fourier transform infrared spectroscopy/FTIR (n = 3). Their swelling capacity and degradation ratio were also measured (n = 4). Cell viability (n = 8), mineralized matrix formation, cell adhesion, and spreading (n = 6) on DPSCs were evaluated. Data were analyzed using ANOVA/post hoc tests (α = 5%). SEM and EDS characterization confirmed the incorporation of BG particles into the hydrogel matrix, showing GelMA's (C, O) and BG's (Si, Cl, Na, Sr) chemical elements. FTIR revealed the main chemical groups of GelMA and BG, as ~1000 cm-1 corresponds to Si-O and ~1440 cm-1 to C-H. All the formulations were degraded by day 12, with a lower degradation ratio observed for GelMA+BG20%. Increasing the concentration of BG resulted in a lower mass swelling ratio. Biologically, all the groups were compatible with cells (p > 0.6196), and cell adhesion increased over time, irrespective of BG concentration, indicating great biocompatibility. GelMA+BG5% demonstrated a higher deposition of mineral nodules over 21 days (p < 0.0001), evidencing the osteogenic potential of hydrogels. GelMA hydrogels incorporated with BG present great cytocompatibility, support cell adhesion, and have a clinically relevant degradation profile and suitable mineralization potential, supporting their therapeutic potential as promising biomaterials for pulp capping.

3.
J Biomed Mater Res B Appl Biomater ; 112(5): e35406, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676957

RESUMEN

The field of tissue engineering has witnessed significant advancements in recent years, driven by the pursuit of innovative solutions to address the challenges of bone regeneration. In this study, we developed an electrospun composite scaffold for bone tissue engineering. The composite scaffold is made of a blend of poly(L-lactide-co-ε-caprolactone) (PLCL) and polyethylene glycol (PEG), with the incorporation of calcined and lyophilized silicate-chlorinated bioactive glass (BG) particles. Our investigation involved a comprehensive characterization of the scaffold's physical, chemical, and mechanical properties, alongside an evaluation of its biological efficacy employing alveolar bone-derived mesenchymal stem cells. The incorporation of PEG and BG resulted in elevated swelling ratios, consequently enhancing hydrophilicity. Thermal gravimetric analysis confirmed the efficient incorporation of BG, with the scaffolds demonstrating thermal stability up to 250°C. Mechanical testing revealed enhanced tensile strength and Young's modulus in the presence of BG; however, the elongation at break decreased. Cell viability assays demonstrated improved cytocompatibility, especially in the PLCL/PEG+BG group. Alizarin red staining indicated enhanced osteoinductive potential, and fluorescence analysis confirmed increased cell adhesion in the PLCL/PEG+BG group. Our findings suggest that the PLCL/PEG/BG composite scaffold holds promise as an advanced biomaterial for bone tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas , Poliésteres , Polietilenglicoles , Ingeniería de Tejidos , Andamios del Tejido , Polietilenglicoles/química , Poliésteres/química , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Vidrio/química , Ensayo de Materiales
4.
Adv Healthc Mater ; : e2304537, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529835

RESUMEN

Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.

5.
Dent Mater ; 40(4): 700-715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401992

RESUMEN

OBJECTIVES: Customization and the production of patient-specific devices, tailoring the unique anatomy of each patient's jaw and facial structures, are the new frontiers in dentistry and maxillofacial surgery. As a technological advancement, additive manufacturing has been applied to produce customized objects based on 3D computerized models. Therefore, this paper presents advances in additive manufacturing strategies for patient-specific devices in diverse dental specialties. METHODS: This paper overviews current 3D printing techniques to fabricate dental and maxillofacial devices. Then, the most recent literature (2018-2023) available in scientific databases reporting advances in 3D-printed patient-specific devices for dental and maxillofacial applications is critically discussed, focusing on the major outcomes, material-related details, and potential clinical advantages. RESULTS: The recent application of 3D-printed customized devices in oral prosthodontics, implantology and maxillofacial surgery, periodontics, orthodontics, and endodontics are presented. Moreover, the potential application of 4D printing as an advanced manufacturing technology and the challenges and future perspectives for additive manufacturing in the dental and maxillofacial area are reported. SIGNIFICANCE: Additive manufacturing techniques have been designed to benefit several areas of dentistry, and the technologies, materials, and devices continue to be optimized. Image-based and accurately printed patient-specific devices to replace, repair, and regenerate dental and maxillofacial structures hold significant potential to maximize the standard of care in dentistry.


Asunto(s)
Impresión Tridimensional , Prostodoncia , Humanos
6.
Exp Dermatol ; 33(1): e15005, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284199

RESUMEN

The evolutionary establishment of an internal biological clock is a primordial event tightly associated with a 24-h period. Changes in the circadian rhythm can affect cellular functions, including proliferation, DNA repair and redox state. Even isolated organs, tissues and cells can maintain an autonomous circadian rhythm. These cell-autonomous molecular mechanisms are driven by intracellular clock genes, such as BMAL1. Little is known about the role of core clock genes and epigenetic modifications in the skin. Our focus was to identify BMAL1-driven epigenetic modifications associated with gene transcription by mapping the acetylation landscape of histones in epithelial cells responding to injury. We explored the role of BMAL1 in epidermal wound and tissue regeneration using a loss-of-function approach in vivo. We worked with BMAL1 knockout mice and a contraction-resistance wound healing protocol, determining the histone modifications using specific antibodies to detect the acetylation levels of histones H3 and H4. We found significant differences in the acetylation levels of histones in both homeostatic and injured skin with deregulated BMAL1. The intact skin displayed varied acetylation levels of histones H3 and H4, including hyperacetylation of H3 Lys 9 (H3K9). The most pronounced changes were observed at the repair site, with notable alterations in the acetylation pattern of histone H4. These findings reveal the importance of histone modifications in response to injury and indicate that modulation of BMAL1 and its associated epigenetic events could be therapeutically harnessed to improve skin regeneration.


Asunto(s)
Factores de Transcripción ARNTL , Histonas , Ratones , Animales , Histonas/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano , Epigénesis Genética , Ratones Noqueados
7.
Acta Biomater ; 173: 495-508, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939819

RESUMEN

Pulp capping is a necessary procedure for preserving the vitality and health of the dental pulp, playing a crucial role in preventing the need for root canal treatment or tooth extraction. Here, we developed an electrospun gelatin methacryloyl (GelMA) fibrous scaffold incorporating beta-tricalcium phosphate (TCP) particles for pulp capping. A comprehensive morphological, physical-chemical, and mechanical characterization of the engineered fibrous scaffolds was performed. In vitro bioactivity, cell compatibility, and odontogenic differentiation potential of the scaffolds in dental pulp stem cells (DPSCs) were also evaluated. A pre-clinical in vivo model was used to determine the therapeutic role of the GelMA/TCP scaffolds in promoting hard tissue formation. Morphological, chemical, and thermal analyses confirmed effective TCP incorporation in the GelMA nanofibers. The GelMA+20%TCP nanofibrous scaffold exhibited bead-free morphology and suitable mechanical and degradation properties. In vitro, GelMA+20%TCP scaffolds supported apatite-like formation, improved cell spreading, and increased deposition of mineralization nodules. Gene expression analysis revealed upregulation of ALPL, RUNX2, COL1A1, and DMP1 in the presence of TCP-laden scaffolds. In vivo, analyses showed mild inflammatory reaction upon scaffolds' contact while supporting mineralized tissue formation. Although the levels of Nestin and DMP1 proteins did not exceed those associated with the clinical reference treatment (i.e., mineral trioxide aggregate), the GelMA+20%TCP scaffold exhibited comparable levels, thus suggesting the emergence of differentiated odontoblast-like cells capable of dentin matrix secretion. Our innovative GelMA/TCP scaffold represents a simplified and efficient alternative to conventional pulp-capping biomaterials. STATEMENT OF SIGNIFICANCE: Vital pulp therapy (VPT) aims to preserve dental pulp vitality and avoid root canal treatment. Biomaterials that bolster mineralized tissue regeneration with ease of use are still lacking. We successfully engineered gelatin methacryloyl (GelMA) electrospun scaffolds incorporated with beta-tricalcium phosphate (TCP) for VPT. Notably, electrospun GelMA-based scaffolds containing 20% (w/v) of TCP exhibited favorable mechanical properties and degradation, cytocompatibility, and mineralization potential indicated by apatite-like structures in vitro and mineralized tissue deposition in vivo, although not surpassing those associated with the standard of care. Collectively, our innovative GelMA/TCP scaffold represents a simplified alternative to conventional pulp capping materials such as MTA and Biodentine™ since it is a ready-to-use biomaterial, requires no setting time, and is therapeutically effective.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Andamios del Tejido/química , Células Cultivadas , Materiales Biocompatibles/química , Diferenciación Celular , Apatitas/farmacología , Pulpa Dental
8.
Odontology ; 112(2): 435-443, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37845592

RESUMEN

This study aimed to evaluate the effect of dentin hypersensitivity treatments on immediate and long-term shear bond strength (SBS) of composite restorations. Ninety non-carious extracted human molars were cut to expose dentin, which was embedded in acrylic resin, and randomly divided into three groups (n = 30/group) according to surface treatment: 1) no treatment (C and C*; control); 2) silver diamine fluoride with potassium iodide (SDF/KI and SDF/KI*; Riva Star); and 3) nano-hydroxyapatite (nHAp and nHAp*; PrevDent). The specimens were etched through the etch-and-rinse technique, followed by universal adhesive application and resin composite cylinders (2.38 mm in diameter × 3.5 mm high). The SBS was tested immediately (24 h after the restoration) and after thermocycling (*) (5000 cycles, 5 °C to 55 °C) at a 0.5 mm/min crosshead speed using a universal testing machine. A stereomicroscope was used to evaluate the mode of failure, and representative scanning electron microscopy (SEM) images were also acquired. Data normality was verified, and two-way ANOVA and Tukey's post hoc tests were performed for multiple comparisons (α = 0.05). The control group presented the highest SBS (27.10 MPa), while SDF/KI* had the lowest values (6.87 MPa). nHAp-based desensitizer exhibited higher SBS than SDF/KI for both immediate (22.6 MPa) and thermocycled (19.03 MPa) conditions. No intragroup difference was evidenced between immediate and thermocycled samples for any group. Most specimens for the C and nHAp groups presented mixed failure, while the SDF/KI groups presented comparable adhesive and mixed failures. The SBS of adhesive restorations after the application of desensitizing agents is material dependent, where SDF/KI reduces SBS values below the acceptable minimum bond strength, while the nHAp application meets the minimally required bond strength.


Asunto(s)
Recubrimiento Dental Adhesivo , Recubrimientos Dentinarios , Humanos , Recubrimientos Dentinarios/química , Recubrimiento Dental Adhesivo/métodos , Dentina , Pirenos , Ensayo de Materiales , Cementos de Resina/química , Resistencia al Corte
9.
Gels ; 9(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998987

RESUMEN

Keeping sodium hypochlorite (NaOCl) within the root canal is challenging in regenerative endodontics. In this study, we developed a drug delivery system using a gelatin methacryloyl (GelMA) hydrogel incorporated with aluminosilicate clay nanotubes (HNTs) loaded with NaOCl. Pure GelMA, pure HNTs, and NaOCl-loaded HNTs carrying varying concentrations were assessed for chemo-mechanical properties, degradability, swelling capacity, cytocompatibility, antimicrobial and antibiofilm activities, and in vivo for inflammatory response and degradation. SEM images revealed consistent pore sizes of 70-80 µm for all samples, irrespective of the HNT and NaOCl concentration, while HNT-loaded hydrogels exhibited rougher surfaces. The hydrogel's compressive modulus remained between 100 and 200 kPa, with no significant variations. All hydrogels demonstrated a 6-7-fold mass increase and complete degradation by the seventh day. Despite an initial decrease in cell viability, all groups recovered to 65-80% compared to the control. Regarding antibacterial and antibiofilm properties, 12.5 HNT(Double) showed the highest inhibition zone on agar plates and the most significant reduction in biofilm compared to other groups. In vivo, the 12.5 HNT(Double) group displayed partial degradation after 21 days, with mild localized inflammatory responses but no tissue necrosis. In conclusion, the HNT-NaOCl-loaded GelMA hydrogel retains the disinfectant properties, providing a safer option for endodontic procedures without harmful potential.

10.
Saudi Dent J ; 35(6): 589-601, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37817791

RESUMEN

Objectives: The goal of this systematic review was to analyze, in randomized controlled clinical trials (RCTs), regenerative techniques used to treat peri-implantitis (PI). Methods: Three databases (PubMed/Medline, EMBASE, and On-Line Knowledge Library) were accessed, applying the PICO strategy (Population [P], Intervention [I], Comparison [C], and Outcomes [O]), with the following focused questions: (i) "In patients who received regenerative treatments for peri-implantitis (P), is the regenerative surgical treatment (I) clinically effective and predictable compared to non-regenerative (C) to treat PI (O)?"; and (ii) "In patients who received regenerative treatments for peri-implantitis (P), the regenerative approach (I), compared to non-regenerative (C), significantly increase the prognosis and implant survival rate in the mid- and long-term (O)?" The inclusion criteria were RCTs published in English between 2012 and 2022, with at least a one-year follow-up, which applied regenerative techniques to treat peri-implantitis. Cochrane's collaboration tool for assessing the risk of bias was used. Main results: Nine articles were included with 404 patients (225 females and 179 males; mean age of 60.44 years). One study evaluated patients after 48 months and another after 88 months. The techniques and devices used were: (i) implantoplasty with Er:YAG laser, (ii) blood concentrate (growth factors), and (iii) EMD, with no statistically significant outcome. Two studies considered the use of titanium granules with a significant increase in radiographic bone identification, whereas regenerative techniques with bone graft (autogenous, alloplastic, and xenograft) were the majority chosen, associated or not, with a collagen membrane. Xenograft had better results radiographically when compared to the autogenous bone graft and presented better results for bone level. There was an overall decrease in bleeding on probing, independent of the control or test group, and a reduction in pocket depth in the groups analyzed. Titanium granules, EMD, Er:YAG laser, and CGF had non-significant results; better results were observed when using bone grafts. The RoB showed a low risk in four studies (44.44%), three with moderate (33.33%), and two with high risk (22.23%). Conclusion: Surgical regenerative treatment was a predictable option in the management of PI and in improving the clinical parameters of peri-implant tissues in the short term, mainly when using porous titanium granules, alloplastic bone grafts, and xenografts.

11.
J Funct Biomater ; 14(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37504845

RESUMEN

The objective of this research was to create and appraise biodegradable polymer-based nanofibers containing distinct concentrations of calcium trimetaphosphate (Ca-TMP) for periodontal tissue engineering. Poly(ester urea) (PEU) (5% w/v) solutions containing Ca-TMP (15%, 30%, 45% w/w) were electrospun into fibrous scaffolds. The fibers were evaluated using SEM, EDS, TGA, FTIR, XRD, and mechanical tests. Degradation rate, swelling ratio, and calcium release were also evaluated. Cell/Ca-TMP and cell/scaffold interaction were assessed using stem cells from human exfoliated deciduous teeth (SHEDs) for cell viability, adhesion, and alkaline phosphatase (ALP) activity. Analysis of variance (ANOVA) and post-hoc tests were used (α = 0.05). The PEU and PEU/Ca-TMP-based membranes presented fiber diameters at 469 nm and 414-672 nm, respectively. Chemical characterization attested to the Ca-TMP incorporation into the fibers. Adding Ca-TMP led to higher degradation stability and lower dimensional variation than the pure PEU fibers; however, similar mechanical characteristics were observed. Minimal calcium was released after 21 days of incubation in a lipase-enriched solution. Ca-TMP extracts enhanced cell viability and ALP activity, although no differences were found between the scaffold groups. Overall, Ca-TMP was effectively incorporated into the PEU fibers without compromising the morphological properties but did not promote significant cell function.

12.
ACS Appl Mater Interfaces ; 15(27): 32121-32135, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37364054

RESUMEN

Major advances in the field of periodontal tissue engineering have favored the fabrication of biodegradable membranes with tunable physical and biological properties for guided bone regeneration (GBR). Herein, we engineered innovative nanoscale beta-tricalcium phosphate (ß-TCP)-laden gelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkable composite fibrous membranes via electrospinning. Chemo-morphological findings showed that the composite microfibers had a uniform porous network and ß-TCP particles successfully integrated within the fibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranes led to increased cell attachment, proliferation, mineralization, and osteogenic gene expression in alveolar bone-derived mesenchymal stem cells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promote robust bone regeneration in rat calvarial critical-size defects, showing remarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether, the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiation of aBMSCs in vitro and pronounced bone formation in vivo. Our data confirmed that the electrospun GelMA/PCL-TCP composite has a strong potential as a promising membrane for guided bone regeneration.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Ratas , Animales , Materiales Biocompatibles/farmacología , Regeneración Ósea , Fosfatos de Calcio/farmacología , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido
13.
Biomater Adv ; 150: 213427, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37075551

RESUMEN

Currently employed approaches and materials used for vital pulp therapies (VPTs) and regenerative endodontic procedures (REPs) lack the efficacy to predictably achieve successful outcomes due to their inability to achieve adequate disinfection and/or lack of desired immune modulatory effects. Natural polymers and medicinal herbs are biocompatible, biodegradable, and present several therapeutic benefits and immune-modulatory properties; thus, standing out as a clinically viable approach capable of establishing a conducive environment devoid of bacteria and inflammation to support continued root development, dentinal bridge formation, and dental pulp tissue regeneration. However, the low stability and poor mechanical properties of the natural compounds have limited their application as potential biomaterials for endodontic procedures. In this study, Aloe vera (AV), as a natural antimicrobial and anti-inflammatory agent, was incorporated into photocrosslinkable Gelatin methacrylate (GelMA) nanofibers with the purpose of developing a highly biocompatible biomaterial capable of eradicating endodontic infection and modulating inflammation. Stable GelMA/AV nanofibers with optimal properties were obtained at the ratio of (70:30) by electrospinning. In addition to the pronounced antibacterial effect against Enterococcus faecalis, the GelMA/AV (70:30) nanofibers also exhibited a sustained antibacterial activity over 14 days and significant biofilm reduction with minimal cytotoxicity, as well as anti-inflammatory properties and immunomodulatory effects favoring healing. Our results indicate that the novel GelMA/AV (70:30) nanofibers hold great potential as a biomaterial strategy for endodontic infection eradication and enhanced healing.


Asunto(s)
Aloe , Nanofibras , Gelatina/farmacología , Desinfección , Nanofibras/uso terapéutico , Antibacterianos , Materiales Biocompatibles
14.
Dent Mater ; 39(4): 333-349, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894414

RESUMEN

OBJECTIVES: The current standard for treating irreversibly damaged dental pulp is root canal therapy, which involves complete removal and debridement of the pulp space and filling with an inert biomaterial. A regenerative approach to treating diseased dental pulp may allow for complete healing of the native tooth structure and enhance the long-term outcome of once-necrotic teeth. The aim of this paper is, therefore, to highlight the current state of dental pulp tissue engineering and immunomodulatory biomaterials properties, identifying exciting opportunities for their synergy in developing next-generation biomaterials-driven technologies. METHODS: An overview of the inflammatory process focusing on immune responses of the dental pulp, followed by periapical and periodontal tissue inflammation are elaborated. Then, the most recent advances in treating infection-induced inflammatory oral diseases, focusing on biocompatible materials with immunomodulatory properties are discussed. Of note, we highlight some of the most used modifications in biomaterials' surface, or content/drug incorporation focused on immunomodulation based on an extensive literature search over the last decade. RESULTS: We provide the readers with a critical summary of recent advances in immunomodulation related to pulpal, periapical, and periodontal diseases while bringing light to tissue engineering strategies focusing on healing and regenerating multiple tissue types. SIGNIFICANCE: Significant advances have been made in developing biomaterials that take advantage of the host's immune system to guide a specific regenerative outcome. Biomaterials that efficiently and predictably modulate cells in the dental pulp complex hold significant clinical promise for improving standards of care compared to endodontic root canal therapy.


Asunto(s)
Materiales Biocompatibles , Pulpa Dental , Pulpa Dental/metabolismo , Ingeniería de Tejidos , Tratamiento del Conducto Radicular , Regeneración/fisiología
15.
Nanomaterials (Basel) ; 13(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985892

RESUMEN

Degradation of the collagen fibrils at the dentin-resin interface by the enzymatic activity of matrix metalloproteinases (MMPs) has been known to permit some dental restoration complications, such as microleakage, secondary caries, and, ultimately, restoration failures. This study aimed to evaluate a modified adhesive by adding an MMP inhibitor from green tea extract with and without nanotube encapsulation to sustain the drug release. Epigallocatechin-3-gallate (EGCG) and Halloysite nanotubes (HNTs) were prepared to produce three variant combinations of modified adhesive (EGCG, EGCG-encapsulated HNT, and EGCG-free HNT). The drug loading efficiency and EGCG release over time were evaluated using UV-vis spectrometry. MMP-mediated ß-casein (BCN) cleavage rate assays were used to determine the ability of the EGCG in eluates of the adhesive to inhibit MMP-9 activities. For up to 8 weeks, HNT encapsulation reduced release to a statistically significant level. MMP-mediated ß-casein cleavage rate assays showed a significant decrease for the EGCG groups compared to the non-EGCG adhesive groups. Furthermore, the use of HNT for EGCG encapsulation to modify a dental adhesive helped slow down the rate of EGCG release without impacting its MMP inhibitory capabilities, which may help to maintain the dentin-resin interface's integrity over the long term after dental restoration placement.

16.
J Mater Chem B ; 11(17): 3823-3835, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36946228

RESUMEN

Regenerative endodontics represents a paradigm shift in dental pulp therapy for necrotic young permanent teeth. However, there are still challenges associated with attaining maximum root canal disinfection while supporting angiogenesis and preserving resident stem cells viability and differentiation capacity. Here, we developed a hydrogel system by incorporating antibiotic-eluting fiber-based microparticles in gelatin methacryloyl (GelMA) hydrogel to gather antimicrobial and angiogenic properties while prompting minimum cell toxicity. Minocycline (MINO) or clindamycin (CLIN) was introduced into a polymer solution and electrospun into fibers, which were further cryomilled to attain MINO- or CLIN-eluting fibrous microparticles. To obtain hydrogels with multi-therapeutic effects, MINO- or CLIN-eluting microparticles were suspended in GelMA at distinct concentrations. The engineered hydrogels demonstrated antibiotic-dependent swelling and degradability while inhibiting bacterial growth with minimum toxicity in dental-derived stem cells. Notably, compared to MINO, CLIN hydrogels enhanced the formation of capillary-like networks of endothelial cells in vitro and the presence of widespread vascularization with functioning blood vessels in vivo. Our data shed new light onto the clinical potential of antibiotic-eluting gelatin methacryloyl hydrogel as an injectable scaffold with multi-therapeutic effects to promote antimicrobial disinfection and angiogenesis for regenerative endodontics.


Asunto(s)
Antiinfecciosos , Endodoncia Regenerativa , Células Endoteliales , Desinfección , Hidrogeles/farmacología , Antibacterianos/farmacología , Clindamicina , Minociclina
17.
Clin Oral Investig ; 27(7): 3447-3456, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36947264

RESUMEN

OBJECTIVES: To evaluate the incorporation of halloysite nanotubes (HNTs) loaded with one of two calcium sources (i.e., calcium hydroxide/CaOH2 or beta-tricalcium phosphate/ß-TCP) on the physicochemical and biological properties of an experimental resin-based dual-cured endodontic sealer. MATERIALS AND METHODS: HNTs were encapsulated with CaOH2 or ß-TCP at 10 wt.%. HNTs containing CaOH2 or ß-TCP were added into the experimental sealers at 50 wt.%. The control sealers were the calcium-free HNT-modified resin-based experimental sealer and AH Plus™, a commercially available endodontic sealer. Degree of conversion, setting time, flow, film thickness, radiopacity, dimensional stability, and calcium ions release were determined. Antibiofilm properties and cytocompatibility of the formulated sealers and commercial control were also evaluated. One and two-way ANOVA analysis followed by Tukey's post hoc test was conducted to evaluate the effect of the independent variable on the evaluated properties. RESULTS: FTIR confirmed the encapsulation of calcium sources into HNTs. Regarding flow and film thickness, the values obtained from these sealers were in accordance with the specifications provided by ISO 6876. For radiopacity, AH Plus™ achieved the highest radiopacity (p<0.05). Among the experimental formulations, all experimental HNT-containing compositions exhibited values below 3 mm Al. The experimental sealers showed greater dimensional changes when compared to the commercial (AH Plus™) control. The release of calcium ions was observed for the HNT_CaOH2 and HNT_ß-TCP sealers without statistical differences. Experimental sealers containing HNT_CaOH2 and HNT_ß-TCP significantly reduced the CFU/mL count and showed cell compatibility. CONCLUSIONS: The findings of this study demonstrate that the incorporation of HNT_CaOH2 or HNT_ß-TCP into resin-based experimental sealers promoted antimicrobial effects and gradual calcium release without impairing cytocompatibility or physicochemical properties of the sealers. Still, an adjustment to reach the minimal radiopacity established by ISO 6876 is needed. CLINICAL RELEVANCE: The experimental resin-based sealers seemed to be an alternative for endodontics. The incorporation of calcium sources exerts promising antimicrobial effects while displaying low cell toxicity.


Asunto(s)
Hidróxido de Calcio , Selladores de Fosas y Fisuras , Resinas Sintéticas , Materiales de Obturación del Conducto Radicular , Humanos , Materiales de Obturación del Conducto Radicular/farmacología , Hidróxido de Calcio/farmacología , Calcio , Antiinfecciosos , Ensayo de Materiales
18.
ACS Appl Mater Interfaces ; 15(10): 12735-12749, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36854044

RESUMEN

Periodontitis is a ubiquitous chronic inflammatory, bacteria-triggered oral disease affecting the adult population. If left untreated, periodontitis can lead to severe tissue destruction, eventually resulting in tooth loss. Despite previous efforts in clinically managing the disease, therapeutic strategies are still lacking. Herein, melt electrowriting (MEW) is utilized to develop a compositionally and structurally tailored graded scaffold for regeneration of the periodontal ligament-to-bone interface. The composite scaffolds, consisting of fibers of polycaprolactone (PCL) and fibers of PCL-containing magnesium phosphate (MgP) were fabricated using MEW. To maximize the bond between bone (MgP) and ligament (PCL) regions, we evaluated two different fiber architectures in the interface area. These were a crosshatch pattern at a 0/90° angle and a random pattern. MgP fibrous scaffolds were able to promote in vitro bone formation even in culture media devoid of osteogenic supplements. Mechanical properties after MgP incorporation resulted in an increase of the elastic modulus and yield stress of the scaffolds, and fiber orientation in the interfacial zone affected the interfacial toughness. Composite graded MEW scaffolds enhanced bone fill when they were implanted in an in vivo periodontal fenestration defect model in rats. The presence of an interfacial zone allows coordinated regeneration of multitissues, as indicated by higher expression of bone, ligament, and cementoblastic markers compared to empty defects. Collectively, MEW-fabricated scaffolds having compositionally and structurally tailored zones exhibit a good mimicry of the periodontal complex, with excellent regenerative capacity and great potential as a defect-specific treatment strategy.


Asunto(s)
Ligamento Periodontal , Periodontitis , Ratas , Animales , Andamios del Tejido/química , Huesos , Osteogénesis , Poliésteres/química , Periodontitis/terapia , Ingeniería de Tejidos/métodos , Regeneración Ósea
19.
Methods Mol Biol ; 2588: 493-503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36418707

RESUMEN

Gelatin methacrylate (GelMA) is a biodegradable and biocompatible engineered material with significant promise for its applications in tissue engineering, drug delivery, and 3D bioprinting applications. Gelatin is functionalized with terminal methacrylate groups which allow for its photoinducible crosslinking, and thereby tunable properties. Photocrosslinking of GelMA solution in situ allows for fabrication of hydrogels to fit patient-specific defects. Given its favorable biologic properties, GelMA may be used as a carrier for bioactive substances necessary to induce regenerative phenotypes or augment healing, such as growth factors and biotherapeutics. Gelatin is cleaved by cell-secreted enzymes such that its degradation, and subsequently release of bioactive substances, is well-matched to tissue regeneration processes. GelMA may be mixed with a wide array of additives to enhance and improve the specificity of its biologic activity. Here, we present two protocols for novel fabrications and their uses as clinically relevant drug delivery systems. GelMA hydrogels provides a versatile platform for the development of injectable drug delivery therapeutics for broad applications in regenerative dental medicine.


Asunto(s)
Productos Biológicos , Gelatina , Sistemas de Liberación de Medicamentos , Metacrilatos , Hidrogeles , Materiales Biocompatibles , Odontología
20.
Odontology ; 111(1): 78-84, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35731305

RESUMEN

This investigation aimed to synthesize poly(D,L-lactide) (PLA)-based fibrous scaffolds containing natural essential oils (i.e., linalool and citral) and determine their antimicrobial properties and cytocompatibility as a clinically viable cell-friendly disinfection strategy for regenerative endodontics. PLA-based fibrous scaffolds were fabricated via electrospinning with different concentrations of linalool and citral. The micromorphology and average diameter of the fibers was investigated through scanning electron microscopy (SEM). The chemical composition of the scaffolds was inferred by Fourier-transform infrared spectroscopy (FTIR). Antimicrobial efficacy against Enterococcus faecalis and Actinomyces naeslundii was also evaluated by agar diffusion and colony-forming units (CFU) assays. The scaffolds' cytocompatibility was determined using dental pulp stem cells (DPSCs). Statistical analyses were performed and the significance level was set at α = 5%. Linalool and citral's incorporation in the PLA fibrous scaffolds was confirmed in the FTIR spectra. SEM images indicate no morphological changes upon inclusion of the essential oils, except the reduced diameter of 40% linalool-laden fibers (p < 0.05). Importantly, significant antimicrobial properties were reported for citral-containing scaffolds for CFU/mL counts (p < 0.05), while only 20% and 40% linalool-laden scaffolds reduced CFU/mL (p < 0.05). Meanwhile, the inhibition halos were verified in a concentration-dependent manner for all monoterpenes-laden scaffolds. Citral- and linalool-laden PLA-based fibrous scaffolds showed acceptable cytocompatibility. The incorporation of natural monoterpenes did not alter the scaffolds' fibrous morphology, promoted antimicrobial action against endodontic pathogens, and preserved DPSCs viability. Linalool- and citral-laden electrospun scaffolds hold promise as naturally derived antimicrobial therapeutics for applications in regenerative endodontics.


Asunto(s)
Antiinfecciosos , Ciprofloxacina , Ciprofloxacina/química , Ciprofloxacina/farmacología , Monoterpenos/farmacología , Antiinfecciosos/farmacología , Poliésteres/farmacología , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...