Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37847120

RESUMEN

B-Box-containing zinc finger transcription factors (BBX) are involved in light-mediated growth, affecting processes such as hypocotyl elongation in Arabidopsis thaliana. However, the molecular and hormonal framework that regulates plant growth through BBX proteins is incomplete. Here, we demonstrate that BBX21 inhibits the hypocotyl elongation through the brassinosteroid (BR) pathway. BBX21 reduces the sensitivity to 24-epiBL, a synthetic active BR, principally at very-low concentrations in simulated shade. The biosynthesis profile of BRs showed that two active BR -brassinolide (BL) and 28-homobrassinolide (28-homoBL)- and 8 of 11 intermediates can be repressed by BBX21 under white light (WL) or simulated shade. Furthermore, BBX21 represses the expression of CYTOCHROME P450 90B1 (DWF4/CYP90B1), BRASSINOSTEROID-6-OXIDASE 1 (BR6OX1, CYP85A1) and BR6OX2 (CYP85A2) genes involved in the BR biosynthesis in WL while specifically promoting DWF4 and PHYB ACTIVATION TAGGED SUPPRESSOR 1 (CYP2B1/BAS1) expression in WL supplemented with far-red (WL+FR), a treatment that simulates shade. In addition, BBX21 represses BR signalling genes such as PACLOBUTRAZOL RESISTANCE1 (PRE1), PRE3 and ARABIDOPSIS MYB-LIKE 2 (MYBL2), and auxin-related and expansin genes, such as INDOLE-3-ACETIC ACID INDUCIBLE 1 (IAA1), IAA4 and EXPANSIN 11 (EXP11) in short-term shade. By a genetic approach we found that BBX21 acts genetically upstream of BRASSINAZOLE-RESISTANT 1 (BZR1) for the promotion of DWF4 and BAS1 gene expression in shade. We propose that BBX21 integrates the BR homeostasis and shade-light signalling allowing the fine-tuning of hypocotyl elongation in Arabidopsis.

2.
Physiol Plant ; 175(4): e13991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616016

RESUMEN

Plants detect competitors in shaded environments by perceiving a reduction in photosynthetically active radiation (PAR) and the reduction between the red and far-red light (R:FR) ratio and blue photons. These light signals are detected by phytochromes and cryptochromes, which trigger shade avoidance responses such as shoot and petiole elongation and lead to increased susceptibility to pathogen attack. We studied morphological, anatomical, and photosynthesis differences in potato plants (Solanum tuberosum var. Spunta) exposed to sunlight or simulated shade in a greenhouse. We found that simulated shade strongly induced stem and internode elongation with a higher production of free auxin in stems and a lower production of tubers. The mesophyll thickness of the upper leaves of plants grown in simulated shade was lower, but the epidermis was wider compared with the leaves of plants cultivated in sunlight. In addition, the photosynthesis rate was lower in the upper leaves exposed to nonsaturated irradiances and higher in the basal leaves at saturated irradiances compared with control plants. RNA-seq analysis showed that 146 and 155 genes were up- and downregulated by shade, respectively. By quantitative reverse transcription polymerase chain reaction, we confirmed that FLOWERING LOCUS T (FT), WRKY-like, and PAR1b were induced, while FLAVONOL 4-SULFOTRANSFERASE was repressed under shade. In shaded plants, leaves and tubers were more susceptible to the necrotrophic fungus Botrytis cinerea attack. Overall, our work demonstrates configurational changes between growth and defense decisions in potato plants cultivated in simulated shade.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Transcriptoma , Luz , Luz Solar , Hojas de la Planta/genética
3.
Plants (Basel) ; 12(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446954

RESUMEN

Seed germination is a critical stage for survival during the life cycle of an individual plant. Genetic and environmental cues are integrated by individual seeds to determine germination, mainly achieved through regulation of the metabolism and signaling of gibberellins (GA) and abscisic acid (ABA), two phytohormones with antagonistic roles. Saline and drought conditions can arrest the germination of seeds and limit the seedling emergence and homogeneity of crops. This work aimed to study the function of BBX24, a B-Box transcription factor, in the control of germination of Arabidopsis thaliana seeds imbibed in saline and osmotic conditions. Seeds of mutant and reporter GUS lines of BBX24 were incubated at different doses of NaCl and polyethylene-glycol (PEG) solutions and with ABA, GA and their inhibitors to evaluate the rate of germination. We found that BBX24 promotes seed germination under moderated stresses. The expression of BBX24 is inhibited by NaCl and PEG. In addition, ABA suppresses BBX24-induced seed germination. Additional experiments suggest that BBX24 reduces ABA sensitivity, improving NaCl tolerance, and increases GA sensitivity in seeds imbibed in ABA. In addition, BBX24 inhibits the expression of ABI3 and ABI5 and genetically interacts upstream of HY5 and ABI5. This study demonstrates the relevance of BBX24 to induce drought and salinity tolerance in seed germination to ensure seedling emergence in sub-optimal environments.

4.
Front Plant Sci ; 13: 952214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161012

RESUMEN

Arabidopsis thaliana shows a wide range of natural genetic variation in light responses. Shade avoidance syndrome is a strategy of major adaptive significance that includes seed germination, elongation of vegetative structures, leaf hyponasty, and acceleration of flowering. Previously, we found that the southernmost Arabidopsis accession, collected in the south of Patagonia (Pat), is hyposensitive to light and displays a reduced response to shade light. This work aimed to explore the genetic basis of the shade avoidance response (SAR) for hypocotyl growth by QTL mapping in a recently developed 162 RIL population between Col-0 and Pat. We mapped four QTL for seedling hypocotyl growth: WL1 and WL2 QTL in white light, SHADE1 QTL in shade light, and SAR1 QTL for the SAR. PHYB is the strongest candidate gene for SAR1 QTL. Here we studied the function of two polymorphic indels in the promoter region, a GGGR deletion, and three non-synonymous polymorphisms on the PHYB coding region compared with the Col-0 reference genome. To decipher the contribution and relevance of each PHYB-Pat polymorphism, we constructed transgenic lines with single or double polymorphisms by using Col-0 as a reference genome. We found that single polymorphisms in the coding region of PHYB have discrete functions in seed germination, seedling development, and shade avoidance response. These results suggest distinct functions for each PHYB polymorphism to the adjustment of plant development to variable light conditions.

5.
Physiol Plant ; 174(3): e13694, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35526232

RESUMEN

Satellites are ubiquitous noncoding tandemly repeated sequences, yet knowledge about their biological relevance is still scarce. In plants, the few described cases point to roles in heterochromatin biology and gene regulation; however, a direct link to plant stress responses is yet to be uncovered. We present evidence that particular non-centromere tandem repeats may display a central regulatory role in the intersection between epigenetic silencing and gene expression in dynamic environments. Within the projected promoter of Arabidopsis thaliana's imprinted SDC locus, a transcriptional gene silencing targeted tandem-repeated area largely mediates epigenetic suppression and imprinting. Here, we show that this area, possibly acting as a cis-element/enhancer, appears necessary and sufficient for SDC's heat transcriptional activity in vegetative tissues. Our results indicate that these particular noncoding tandem repeats may be genic and exhibit dual roles, not only as silencers at normal temperatures but also facilitating expression upon stress. An unusual adaptive form of abiotic transcriptional control unrelated to canonical heat signaling is implied, emphasizing a potential importance of genomic satellites for plant environmental epigenetics.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Calor , Secuencias Repetidas en Tándem/genética
6.
Nat Commun ; 13(1): 1310, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288564

RESUMEN

Root Hairs (RHs) growth is influenced by endogenous and by external environmental signals that coordinately regulate its final cell size. We have recently determined that RH growth was unexpectedly boosted when Arabidopsis thaliana seedlings are cultivated at low temperatures. It was proposed that RH growth plasticity in response to low temperature was linked to a reduced nutrient availability in the media. Here, we explore the molecular basis of this RH growth response by using a Genome Wide Association Study (GWAS) approach using Arabidopsis thaliana natural accessions. We identify the poorly characterized PEROXIDASE 62 (PRX62) and a related protein PRX69 as key proteins under moderate low temperature stress. Strikingly, a cell wall protein extensin (EXT) reporter reveals the effect of peroxidase activity on EXT cell wall association at 10 °C in the RH apical zone. Collectively, our results indicate that PRX62, and to a lesser extent PRX69, are key apoplastic PRXs that modulate ROS-homeostasis and cell wall EXT-insolubilization linked to RH elongation at low temperature.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Peroxidasas/genética , Peroxidasas/metabolismo , Raíces de Plantas/metabolismo , Temperatura
7.
Plant J ; 108(4): 1131-1144, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606658

RESUMEN

The B-box (BBX) proteins are zinc-finger transcription factors with a key role in growth and developmental regulatory networks mediated by light. AtBBX21 overexpressing (BBX21-OE) potato (Solanum tuberosum) plants, cultivated in optimal water conditions, have a higher photosynthesis rate and stomatal conductance without penalty in water use efficiency (WUE) and with a higher tuber yield. In this work, we cultivated potato plants in two water regimes: 100 and 35% field capacity of water restriction that imposed leaf water potentials between -0.3 and -1.2 MPa for vegetative and tuber growth during 14 or 28 days, respectively. We found that 42-day-old plants of BBX21-OE were more tolerant to water restriction with higher levels of chlorophylls and tuber yield than wild-type spunta (WT) plants. In addition, the BBX21-OE lines showed higher photosynthesis rates and WUE under water restriction during the morning. Mechanistically, we found that BBX21-OE lines were more tolerant to moderated drought by enhancing mesophyll conductance (gm ) and maximum capacity of electron transport (Jmax ), and by reducing abscisic acid (ABA) sensitivity in plant tissues. By RNA-seq analysis, we found 204 genes whose expression decreased by drought in WT plants and expressed independently of the water condition in BBX21-OE lines as SAP12, MYB73, EGYP1, TIP2-1 and DREB2A, and expressions were confirmed by quantitative polymerase chain reaction. These results suggest that BBX21 interplays with the ABA and growth signaling networks, improving the photosynthetic behavior in suboptimal water conditions with an increase in potato tuber yield.


Asunto(s)
Ácido Abscísico/metabolismo , Fotosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum tuberosum/genética , Factores de Transcripción/metabolismo , Agua/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Sequías , Transporte de Electrón , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/fisiología , Transducción de Señal , Solanum tuberosum/fisiología , Factores de Transcripción/genética
8.
Front Plant Sci ; 12: 677728, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367202

RESUMEN

Arabidopsis thaliana shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, Arabidopsis has a high potential for the identification of genes underlying ecologically important complex traits, thus providing new insights on genome evolution. Previous research suggested that distinct light responses were crucial for Arabidopsis establishment in a peculiar ecological niche of southern Patagonia. The aim of this study was to explore the genetic basis of contrasting light-associated physiological traits that may have mediated the rapid adaptation to this new environment. From a biparental cross between the photomorphogenic contrasting accessions Patagonia (Pat) and Columbia (Col-0), we generated a novel recombinant inbred line (RIL) population, which was entirely next-generation sequenced to achieve ultra-high-density saturating molecular markers resulting in supreme mapping sensitivity. We validated the quality of the RIL population by quantitative trait loci (QTL) mapping for seedling de-etiolation, finding seven QTLs for hypocotyl length in the dark and continuous blue light (Bc), continuous red light (Rc), and continuous far-red light (FRc). The most relevant QTLs, Rc1 and Bc1, were mapped close together to chromosome V; the former for Rc and Rc/dark, and the latter for Bc, FRc, and dark treatments. The additive effects of both QTLs were confirmed by independent heterogeneous inbred families (HIFs), and we explored TZP and ABA1 as potential candidate genes for Rc1 and Bc1QTLs, respectively. We conclude that the Pat × Col-0 RIL population is a valuable novel genetic resource to explore other adaptive traits in Arabidopsis.

9.
J Exp Bot ; 72(15): 5426-5441, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33940608

RESUMEN

Plant density defines vegetative architecture and the competition for light between individuals. Brassica napus (canola, rapeseed) presents a radically different plant architecture compared to traditional crops commonly cultivated at high density, and can act as a model system of indeterminate growth. Using a panel of 152 spring-type accessions and a double-haploid population of 99 lines from a cross between the cultivars Lynx and Monty, we performed genome-wide association studies (GWAS) and quantitative trait locus (QTL) mapping for 12 growth and yield traits at two contrasting plant densities of 15 and 60 plants m-2. The most significant associations were found for time to flowering, biomass at harvest, plant height, silique and seed numbers, and seed yield. These were generally independent of plant density, but some density-dependent associations were found in low-density populations. RNA-seq transcriptomic analysis revealed distinctive latent gene-regulatory responses to simulated shade between Lynx and Monty. Having identified candidate genes within the canola QTLs, we further examined their influence on density responses in Arabidopsis lines mutated in certain homologous genes. The results suggested that TCP1 might promote growth independently of plant density, while HY5 could increase biomass and seed yield specifically at high plant density. For flowering time, the results suggested that PIN genes might accelerate flowering in plant a density-dependent manner whilst FT, HY5, and TCP1 might accelerate it in a density-independent. This work highlights the advantages of using agronomic field experiments together with genetic and transcriptomic approaches to decipher quantitative complex traits that potentially mediate improved crop productivity.


Asunto(s)
Brassica napus , Brassica napus/genética , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Fenotipo , Sitios de Carácter Cuantitativo
10.
Plant Physiol ; 177(1): 369-380, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29555784

RESUMEN

B-box (BBX) proteins are zinc-finger transcription factors containing one or two B-box motifs. BBX proteins act as key factors in the networks regulating growth and development. The relevance of BBX21 to light and abscisic acid signaling in seedling development is well established; however, its importance in adult plant development and agronomic species is poorly understood. Therefore, we studied the effect of heterologous expression of Arabidopsis (Arabidopsis thaliana) BBX21 in potato (Solanum tuberosum) var Spunta. Three independent AtBBX21-expressing lines and the wild-type control were cultivated under sunlight and at controlled temperatures in a greenhouse. By anatomical, physiological, biochemical, and gene expression analysis, we demonstrated that AtBBX21-expressing plants were more robust and produced more tubers than wild-type plants. Interestingly, AtBBX21-expressing plants had higher rates of photosynthesis, with a significant increase in photosynthetic gene expression, and higher stomatal conductance, with increased size of the stomatal opening, without any associated decline in water use efficiency. Furthermore, AtBBX21-expressing potato plants had reduced photoinhibition associated with higher production of anthocyanins and phenolic compounds, and higher expression of genes in the phenylpropanoid biosynthesis pathway. To gain insights into the mechanism of BBX21, we evaluated the molecular, morphological, metabolic, and photosynthetic behavior in adult BBX21-overexpressing Arabidopsis. We conclude that BBX21 overexpression improved morphological and physiological attributes, and photosynthetic rates in nonoptimal, high-irradiance conditions, without associated impairment of water use efficiency. These characteristics of BBX21 may be useful for increasing production of potatoes, and potentially of other crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Solanum tuberosum/fisiología , Solanum tuberosum/efectos de la radiación , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fenoles/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Tubérculos de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Propanoles/metabolismo , Transducción de Señal , Solanum tuberosum/genética
11.
Mol Ecol ; 26(13): 3389-3404, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28316114

RESUMEN

The growing collection of sequenced or genotyped Arabidopsis thaliana accessions includes mostly individuals from the native Eurasian and N. African range and introduced North American populations. Here, we describe the genetic and phenotypic diversity, along with habitats and life history, of A. thaliana plants collected at the southernmost end of its worldwide distribution. Seed samples were harvested from plants growing in four sites within a ~3500-km2 -area in Patagonia, Argentina, and represent the first germplasm to be collected in South America for this species. Whole-genome resequencing revealed that plants from the four sites and a Patagonia herbarium specimen collected in 1967 formed a single haplogroup (Pat), indicating that the phenotypic variation observed in the field reflected plastic responses to the environment. admixture and principal components analyses suggest that the ancestor of the Pat haplogroup either came from Italy or the Balkan/Caucasus regions of Eurasia. In the laboratory, plants from the Pat haplogroup were hyposensitive to continuous red (Rc) and shade light, with corresponding changes in the expression of phytochrome signalling genes. Pat had higher PIF3 and PIF5 and lower HY5 expression under Rc light; and lower expression of PIL1, ATHB2 and HFR1 under shade compared to Col-0. In addition, Pat plants had a strong vernalization requirement associated with high levels of FLC expression. We conclude that including Pat in studies of natural variation and in comparison with other introduced populations will provide additional information for association studies and allow for a more detailed assessment of the demographic events following colonization.


Asunto(s)
Arabidopsis/genética , Genética de Población , Haplotipos , Luz , Adaptación Fisiológica , Arabidopsis/efectos de la radiación , Argentina , Regulación de la Expresión Génica de las Plantas , Fenotipo , Fitocromo/genética
12.
Mol Plant ; 9(10): 1353-1365, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27435853

RESUMEN

ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, inhibits hypocotyl growth and lateral root development, and promotes pigment accumulation in a light-dependent manner in Arabidopsis. Recent research on its role in different processes such as hormone, nutrient, abiotic stress (abscisic acid, salt, cold), and reactive oxygen species signaling pathways clearly places HY5 at the center of a transcriptional network hub. HY5 regulates the transcription of a large number of genes by directly binding to cis-regulatory elements. Recently, HY5 has also been shown to activate its own expression under both visible and UV-B light. Moreover, HY5 acts as a signal that moves from shoot to root to promote nitrate uptake and root growth. Here, we review recent advances on HY5 research in diverse aspects of plant development and highlight still open questions that need to be addressed in the near future for a complete understanding of its function in plant signaling and beyond.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Nucleares/metabolismo , Ácido Abscísico , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Proteínas de Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/farmacología , Frío , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas Nucleares/genética , Proteínas Nucleares/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
13.
Plant Cell Environ ; 39(1): 213-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26177669

RESUMEN

As seasons change, dormant seeds cycle through dormant states until the environmental conditions are favourable for seedling establishment. Dormancy cycle is widespread in the plant kingdom allowing the seeds to display primary and secondary dormancy. Several reports in the last decade have focused on understanding the molecular mechanisms of primary dormancy, but our knowledge regarding secondary dormancy is limited. Here, we studied secondary dormancy induced in Arabidopsis thaliana by incubating seeds at 25 °C in darkness for 4 d. By physiological, pharmacological, expression and genetics approaches, we demonstrate that (1) the entrance in secondary dormancy involves changes in the content and sensitivity to GA, but the content and sensitivity to ABA do not change, albeit ABA is required; (2) RGL2 promotes the entrance in secondary dormancy through ABI5 action; and (3) multivariate analysis with 18 geographical and environmental parameters of accession collection place suggests that temperature is an important variable influencing the induction of secondary dormancy in nature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas/metabolismo , Estaciones del Año , Semillas/fisiología , Temperatura , Factores de Transcripción/genética
14.
Nat Commun ; 6: 6202, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25656233

RESUMEN

In response to canopy shade, plant vegetative structures elongate to gain access to light. However, the mechanism that allows a plastic transcriptional response to canopy shade light is not fully elucidated. Here we propose that the activity of PIF4, a key transcription factor in the shade signalling network, is modulated by the interplay between the BBX24 transcriptional regulator and DELLA proteins, which are negative regulators of the gibberellin (GA) signalling pathway. We show that GA-related targets are enriched among genes responsive to BBX24 under shade and that the shade-response defect in bbx24 mutants is rescued by a GA treatment that promotes DELLA degradation. BBX24 physically interacts with DELLA proteins and alleviates DELLA-mediated repression of PIF4 activity. The proposed molecular mechanism provides reversible regulation of the activity of a key transcription factor that may prove especially relevant under fluctuating light conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Giberelinas/farmacología , Hipocótilo/anatomía & histología , Hipocótilo/efectos de los fármacos , Hipocótilo/efectos de la radiación , Luz , Modelos Biológicos , Mutación/genética , Picloram/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Nicotiana/metabolismo , Técnicas del Sistema de Dos Híbridos
15.
Plant Cell Environ ; 38(7): 1321-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25388923

RESUMEN

Plants compete for photosynthesis light and induce a shade avoidance syndrome (SAS) that confers an important advantage in asymmetric competition for light at high canopy densities. Shade plasticity was studied in a greenhouse experiment cultivating Arabidopsis thaliana plants from 15 populations spread across an altitudinal gradient in the northeast area of Spain that contain a high genetic variation into a reduced geographical range. Plants were exposed to sunlight or simulated shade to identify the range of shade plasticity. Fourteen vegetative, flowering and reproductive traits were measured throughout the life cycle. Shade plasticity in flowering time and dry mass was significantly associated with the altitude of population origin. Plants from coastal populations showed higher shade plasticity indexes than those from mountains. The altitudinal variation in flowering leaf plasticity adjusted negatively with average and minimum temperatures, whereas dry mass plasticity was better explained by negative regressions with the average, maximum and minimum temperatures, and by a positive regression with average precipitation of the population origin. The lack of an altitudinal gradient for the widest number of traits suggests that shade light could be a driver explaining the distribution pattern of individuals in smaller geographical scales than those explored here.


Asunto(s)
Arabidopsis/genética , Variación Genética , Altitud , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Genética de Población , Fenotipo , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Luz Solar
16.
Physiol Plant ; 152(4): 784-94, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24814241

RESUMEN

Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far-red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post-flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level.


Asunto(s)
Brassica napus/fisiología , Flores/fisiología , Transducción de Señal , Biomasa , Brassica napus/crecimiento & desarrollo , Brassica napus/efectos de la radiación , Flores/crecimiento & desarrollo , Flores/efectos de la radiación , Genotipo , Luz , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Tallos de la Planta/efectos de la radiación , Reproducción , Estaciones del Año , Semillas/crecimiento & desarrollo , Semillas/fisiología , Semillas/efectos de la radiación , Factores de Tiempo
17.
Trends Plant Sci ; 19(7): 460-70, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24582145

RESUMEN

The B-box (BBX) proteins are a class of zinc-finger transcription factors containing a B-box domain with one or two B-box motifs, and sometimes also feature a CCT (CONSTANS, CO-like, and TOC1) domain. BBX proteins are key factors in regulatory networks controlling growth and developmental processes that include seedling photomorphogenesis, photoperiodic regulation of flowering, shade avoidance, and responses to biotic and abiotic stresses. In this review we discuss the functions of BBX proteins and the role of B-box motif in mediating transcriptional regulation and protein-protein interaction in plant signaling. In addition, we provide novel insights into the molecular mechanisms of their action and the evolutionary significance of their functional divergence.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Luz , Fotoperiodo , Reguladores del Crecimiento de las Plantas/metabolismo , Estructura Terciaria de Proteína , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/genética , Dedos de Zinc
18.
Gene ; 531(1): 44-52, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23988504

RESUMEN

The B-box domain is conserved in a large number of proteins involved in cell growth control, differentiation and transcriptional regulation among animal and plant species. In Arabidopsis thaliana, some works have found that B-box proteins (BBX) play central developmental functions in flowering, light and abiotic stress signaling. Despite the functional importance of this protein family, evolutionary and structural relationships of BBX proteins have not been extensively investigated in the plant kingdom. Using a phylogenetic approach, we conducted a comprehensive evolutionary analysis of the BBX protein family in twelve plant species (four green algae, one moss, one lycophyte, three monocots and three dicots). The analysis classified 214 BBX proteins into five structure groups, which evolved independently at early stages of green plant evolution. We showed that the B-box consensus sequences of each structure groups retained a common and conserved domain topology. Furthermore, we identified seven novel motifs specific to each structure group and a valine-proline (VP) pair conserved at the C-terminus domain in some BBX proteins suggesting that they are required for protein-protein interactions. As it has been documented in mammalian systems, we also found monopartite and bipartite amino acid sequences at the C-terminus domain that could function as nuclear localization signals (NLSs). The five BBX structure groups evolved constrained by the conservation of amino acid sequences in the two B-boxes, but radiating variation into NLSs and novel motifs of each structural group. We suggest that these features are the functional basis for the BBX protein diversity in green plants.


Asunto(s)
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Viridiplantae/genética , Viridiplantae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Señales de Localización Nuclear , Filogenia , Proteínas de Plantas/química , Posición Específica de Matrices de Puntuación , Dominios y Motivos de Interacción de Proteínas
19.
Plant Signal Behav ; 8(8)2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23733077

RESUMEN

BBX24 and BBX25 are two important transcriptional regulators, which regulate seedling photomorphogenesis in Arabidopsis. Very recently, we have shown that BBX24 and BBX25 negatively regulate the expression of BBX22, reducing the function of HY5, by physically interacting with its bZIP domain. (1) Furthermore, HY5 HOMOLOG, HYH, has been reported to heterodimerize with HY5 and enhances its photomorphogenic function in seedling de-etiolation by serving as coactivator. (8) Here, we further report that BBX24 and BBX25 physically interact with HYH. The physical interactions of BBX24 and BBX25 with HYH could lead to depletion of HYH molecules from the active pool and, thus indirectly, reduce the function of HY5 in promoting photomorphogenesis. Hence, our results suggest another mode of regulation by which BBX24 and BBX25 exert their negative effects on HY5 indirectly through HYH for the fine-tuning of seedling photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Plantones/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Unión al ADN , Modelos Biológicos , Unión Proteica , Proteínas Represoras/química , Saccharomyces cerevisiae , Plantones/metabolismo , Factores de Transcripción/metabolismo
20.
Plant Cell ; 25(4): 1243-57, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23624715

RESUMEN

ELONGATED HYPOCOTYL5 (HY5) is a basic domain/leucine zipper (bZIP) transcription factor, central for the regulation of seedling photomorphogenesis. Here, we identified a B-BOX (BBX)-containing protein, BBX25/SALT TOLERANCE HOMOLOG, as an interacting partner of HY5, which has been previously found to physically interact with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). BBX25 physically interacts with HY5 both in vitro and in vivo. By physiological and genetic approaches, we showed that BBX25 is a negative regulator of seedling photomorphogenesis. BBX25 and its homolog BBX24 regulate deetiolation processes and hypocotyl shade avoidance response in an additive manner. Moreover, genetic relationships of bbx25 and bbx24 with hy5 and cop1 revealed that BBX25 and BBX24 additively enhance COP1 and suppress HY5 functions. BBX25 accumulates in a light-dependent manner and undergoes COP1-mediated degradation in dark and light conditions. Furthermore, a protoplast cotransfection assay showed that BBX24 and BBX25 repress BBX22 expression by interfering with HY5 transcriptional activity. As HY5 binds to the BBX22 promoter and promotes its expression, our results identify a direct mechanism through which the expression of BBX22 is regulated. We suggest that BBX25 and BBX24 function as transcriptional corepressors, probably by forming inactive heterodimers with HY5, downregulating BBX22 expression for the fine-tuning of light-mediated seedling development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Plantones/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Immunoblotting , Luz , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Proteínas Nucleares/metabolismo , Unión Proteica , Protoplastos/metabolismo , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...