Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 12(5): e0006474, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29742102

RESUMEN

Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that has caused large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Currently, no licensed vaccine or therapeutics exists to treat this potentially deadly disease. The explosive nature of RVFV outbreaks and the severe consequences of its accidental or intentional introduction into RVFV-free areas provide the impetus for the development of novel vaccine candidates for use in both livestock and humans. Rationally designed vaccine candidates using reverse genetics have been used to develop deletion mutants of two known RVFV virulence factors, the NSs and NSm genes. These recombinant viruses were demonstrated to be protective and immunogenic in rats, mice, and sheep, without producing clinical illness in these animals. Here, we expand upon those findings and evaluate the single deletion mutant (ΔNSs rRVFV) and double deletion mutant (ΔNSs-ΔNSm rRVFV) vaccine candidates in the common marmoset (Callithrix jacchus), a non-human primate (NHP) model resembling severe human RVF disease. We demonstrate that both the ΔNSs and ΔNSs-ΔNSm rRVFV vaccine candidates were found to be safe and immunogenic in the current study. The vaccinated animals received a single dose of vaccine that led to the development of a robust antibody response. No vaccine-induced adverse reactions, signs of clinical illness or infectious virus were detected in the vaccinated marmosets. All vaccinated animals that were subsequently challenged with RVFV were protected against viremia and liver disease. In summary, our results provide the basis for further development of the ΔNSs and ΔNSs-ΔNSm rRVFV as safe and effective human RVFV vaccines for this significant public health threat.


Asunto(s)
Fiebre del Valle del Rift/prevención & control , Virus de la Fiebre del Valle del Rift/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Callithrix/inmunología , Callithrix/virología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Fiebre del Valle del Rift/inmunología , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Eliminación de Secuencia , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
2.
Sci Rep ; 8(1): 6480, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691416

RESUMEN

Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/genética , MicroARNs/genética , Animales , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Fiebre Hemorrágica Ebola/virología , Humanos , Macaca fascicularis/genética , Macaca mulatta/genética , Ratones , ARN Mensajero/metabolismo , Replicación Viral/genética
3.
Lancet Infect Dis ; 18(7): 738-748, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29627147

RESUMEN

BACKGROUND: The recombinant vesicular stomatitis virus (rVSV) vaccine expressing the Zaire Ebola virus (ZEBOV) glycoprotein is efficacious in the weeks following single-dose injection, but duration of immunity is unknown. We aimed to assess antibody persistence at 1 and 2 years in volunteers who received single-dose rVSV-ZEBOV in three previous trials. METHODS: In this observational cohort study, we prospectively followed-up participants from the African and European phase 1 rVSV-ZEBOV trials, who were vaccinated once in 2014-15 with 300 000 (low dose) or 10-50 million (high dose) plaque-forming units (pfu) of rVSV-ZEBOV vaccine to assess ZEBOV glycoprotein (IgG) antibody persistence. The primary outcome was ZEBOV glycoprotein-specific IgG geometric mean concentrations (GMCs) measured yearly by ELISA compared with 1 month (ie, 28 days) after immunisation. We report GMCs up to 2 years (Geneva, Switzerland, including neutralising antibodies up to 6 months) and 1 year (Lambaréné, Gabon; Kilifi, Kenya) after vaccination and factors associated with higher antibody persistence beyond 6 months, according to multivariable analyses. Trials and the observational study were registered at ClinicalTrials.gov (Geneva: NCT02287480 and NCT02933931; Kilifi: NCT02296983) and the Pan-African Clinical Trials Registry (Lambaréné PACTR201411000919191). FINDINGS: Of 217 vaccinees from the original studies (102 from the Geneva study, 75 from the Lambaréné study, and 40 from the Kilifi study), 197 returned and provided samples at 1 year (95 from the Geneva study, 63 from the Lambaréné, and 39 from the Kilifi study) and 90 at 2 years (all from the Geneva study). In the Geneva group, 44 (100%) of 44 participants who had been given a high dose (ie, 10-50 million pfu) of vaccine and who were seropositive at day 28 remained seropositive at 2 years, whereas 33 (89%) of 37 who had been given the low dose (ie, 300 000 pfu) remained seropositive for 2 years (p=0·042). In participants who had received a high dose, ZEBOV glycoprotein IgG GMCs decreased significantly between their peak (at 1-3 months) and month 6 after vaccination in Geneva (p<0·0001) and Lambaréné (p=0·0298) but not in Kilifi (p=0·5833) and subsequently remained stable at all sites apart from Geneva, where GMC in those given a high dose of vaccine increased significantly between 6 months and 1 year (p=0·0264). Antibody persistence was similar at 1 year and at 6 months in those who had received a low dose of vaccine, with lower titres among participants from the Geneva study at 2 years than at 1 year after vaccination (GMC ratio 0·61, 95% CI 0·49-0·77; p<0·0001). In multivariable analyses, predictors of increased IgG GMCs beyond 6 months included high-dose versus low-dose vaccination (Geneva p=0·0133; Lambaréné p=0·008) and vaccine-related arthritis (p=0·0176), but not sex, age, or baseline seropositivity (all p>0·05). Neutralising antibodies seem to be less durable, with seropositivity dropping from 64-71% at 28 days to 27-31% at 6 months in participants from the Geneva study. INTERPRETATION: Antibody responses to single-dose rVSV-ZEBOV vaccination are sustained across dose ranges and settings, a key criterion in countries where booster vaccinations would be impractical. FUNDING: The Wellcome Trust and Innovative Medicines Initiative 2 Joint Undertaking.


Asunto(s)
Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta a Droga , Vacunas contra el Virus del Ébola/inmunología , Vacunas contra el Virus del Ébola/uso terapéutico , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Cumplimiento de la Medicación , Adulto , Estudios de Cohortes , Femenino , Humanos , Kenia , Masculino , Persona de Mediana Edad , Suiza
4.
Viruses ; 8(4): 87, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27043611

RESUMEN

Marburg virus causes severe and often lethal viral disease in humans, and there are currently no Food and Drug Administration (FDA) approved medical countermeasures. The sporadic occurrence of Marburg outbreaks does not allow for evaluation of countermeasures in humans, so therapeutic and vaccine candidates can only be approved through the FDA animal rule-a mechanism requiring well-characterized animal models in which efficacy would be evaluated. Here, we describe a natural history study where rhesus macaques were surgically implanted with telemetry devices and central venous catheters prior to aerosol exposure with Marburg-Angola virus, enabling continuous physiologic monitoring and blood sampling without anesthesia. After a three to four day incubation period, all animals developed fever, viremia, and lymphopenia before developing tachycardia, tachypnea, elevated liver enzymes, decreased liver function, azotemia, elevated D-dimer levels and elevated pro-inflammatory cytokines suggesting a systemic inflammatory response with organ failure. The final, terminal period began with the onset of sustained hypotension, dehydration progressed with signs of major organ hypoperfusion (hyperlactatemia, acute kidney injury, hypothermia), and ended with euthanasia or death. The most significant pathologic findings were marked infection of the respiratory lymphoid tissue with destruction of the tracheobronchial and mediastinal lymph nodes, and severe diffuse infection in the liver, and splenitis.


Asunto(s)
Macaca mulatta/virología , Enfermedad del Virus de Marburg/transmisión , Enfermedad del Virus de Marburg/virología , Marburgvirus/fisiología , Animales , Recuento de Células Sanguíneas , Pruebas de Coagulación Sanguínea , Citocinas/sangre , Femenino , Pruebas de Función Renal , Pruebas de Función Hepática , Masculino , Enfermedad del Virus de Marburg/diagnóstico , Viremia
5.
PLoS One ; 10(9): e0138843, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26413900

RESUMEN

Marburg virus infection in humans causes a hemorrhagic disease with a high case fatality rate. Countermeasure development requires the use of well-characterized animal models that mimic human disease. To further characterize the cynomolgus macaque model of MARV/Angola, two independent dose response studies were performed using the intramuscular or aerosol routes of exposure. All animals succumbed at the lowest target dose; therefore, a dose effect could not be determined. For intramuscular-exposed animals, 100 PFU was the first target dose that was not significantly different than higher target doses in terms of time to disposition, clinical pathology, and histopathology. Although a significant difference was not observed between aerosol-exposed animals in the 10 PFU and 100 PFU target dose groups, 100 PFU was determined to be the lowest target dose that could be consistently obtained and accurately titrated in aerosol studies.


Asunto(s)
Aerosoles/administración & dosificación , Enfermedad del Virus de Marburg/virología , Marburgvirus/fisiología , Animales , Inyecciones Intramusculares , Estimación de Kaplan-Meier , Macaca fascicularis , Enfermedad del Virus de Marburg/sangre , ARN Viral/sangre , Temperatura
6.
J Virol ; 89(19): 9875-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26202230

RESUMEN

UNLABELLED: Marburg virus (MARV) infection is a lethal hemorrhagic fever for which no licensed vaccines or therapeutics are available. Development of appropriate medical countermeasures requires a thorough understanding of the interaction between the host and the pathogen and the resulting disease course. In this study, 15 rhesus macaques were sequentially sacrificed following aerosol exposure to the MARV variant Angola, with longitudinal changes in physiology, immunology, and histopathology used to assess disease progression. Immunohistochemical evidence of infection and resulting histopathological changes were identified as early as day 3 postexposure (p.e.). The appearance of fever in infected animals coincided with the detection of serum viremia and plasma viral genomes on day 4 p.e. High (>10(7) PFU/ml) viral loads were detected in all major organs (lung, liver, spleen, kidney, brain, etc.) beginning day 6 p.e. Clinical pathology findings included coagulopathy, leukocytosis, and profound liver destruction as indicated by elevated liver transaminases, azotemia, and hypoalbuminemia. Altered cytokine expression in response to infection included early increases in Th2 cytokines such as interleukin 10 (IL-10) and IL-5 and late-stage increases in Th1 cytokines such as IL-2, IL-15, and granulocyte-macrophage colony-stimulating factor (GM-CSF). This study provides a longitudinal examination of clinical disease of aerosol MARV Angola infection in the rhesus macaque model. IMPORTANCE: In this study, we carefully analyzed the timeline of Marburg virus infection in nonhuman primates in order to provide a well-characterized model of disease progression following aerosol exposure.


Asunto(s)
Citocinas/sangre , Interacciones Huésped-Patógeno , Enfermedad del Virus de Marburg/fisiopatología , Marburgvirus/patogenicidad , Aerosoles , Animales , Progresión de la Enfermedad , Inmunohistoquímica , Estudios Longitudinales , Macaca mulatta , Enfermedad del Virus de Marburg/sangre , Factores de Tiempo , Carga Viral
7.
J Virol ; 86(4): 2109-20, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156530

RESUMEN

Rift Valley fever (RVF) virus (RVFV) can cause severe human disease characterized by either acute-onset hepatitis, delayed-onset encephalitis, retinitis and blindness, or a hemorrhagic syndrome. The existing nonhuman primate (NHP) model for RVF utilizes an intravenous (i.v.) exposure route in rhesus macaques (Macaca mulatta). Severe disease in these animals is infrequent, and large cohorts are needed to observe significant morbidity and mortality. To overcome these drawbacks, we evaluated the infectivity and pathogenicity of RVFV in the common marmoset (Callithrix jacchus) by i.v., subcutaneous (s.c.), and intranasal exposure routes to more closely mimic natural exposure. Marmosets were more susceptible to RVFV than rhesus macaques and experienced higher rates of morbidity, mortality, and viremia and marked aberrations in hematological and chemistry values. An overwhelming infection of hepatocytes was a major consequence of infection of marmosets by the i.v. and s.c. exposure routes. Additionally, these animals displayed signs of hemorrhagic manifestations and neurological impairment. Based on our results, the common marmoset model more closely resembles severe human RVF disease and is therefore an ideal model for the evaluation of potential vaccines and therapeutics.


Asunto(s)
Callithrix , Modelos Animales de Enfermedad , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/fisiología , Animales , Humanos , Macaca mulatta , Fiebre del Valle del Rift/mortalidad , Virus de la Fiebre del Valle del Rift/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...