Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11258, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438469

RESUMEN

Rapid determination of drug efficacy against bacterial pathogens is needed to detect potentially resistant bacteria and allow for more rational use of antimicrobials. As an indicator of the antimicrobial effect for rapid detection, we found changes in image brightness in antimicrobial-affected bacteria by scanning electron microscopy (SEM). The cell envelopes of unaffected bacteria were stained with phosphotungstic acid (PTA), whereas the entire cells of affected bacteria were stained. Since tungsten density increases backscattered electron intensity, brighter bacterial images indicate lethal damage. We propose a simplified method for determining antimicrobial efficacy by detecting damage that occurs immediately after drug administration using tabletop SEM. This method enabled the visualization of microscopic deformations while distinguishing bacterial-cell-envelope damage on gram-negative bacteria due to image-brightness change. Escherichia coli, Acinetobacter baumannii, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa were exposed to imipenem and colistin, which affect the cell envelope through different mechanisms. Classification of single-cell images based on brightness was quantified for approximately 500 bacteria per sample, and the bright images predominated within 5 to 60 min of antimicrobial treatment, depending on the species. Using intracellular PTA staining and characteristic deformations as indicators, it was possible to determine the efficacy of antimicrobials in causing bacterial-cell-envelope damage.


Asunto(s)
Antiinfecciosos , Pared Celular , Microscopía Electrónica de Rastreo , Membrana Celular , Bacterias Gramnegativas , Escherichia coli
2.
Front Microbiol ; 12: 658322, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220746

RESUMEN

Background: Enabling faster Antimicrobial Susceptibility Testing (AST) is critical, especially to detect antibiotic resistance, to provide rapid and appropriate therapy and to improve clinical outcomes. Although several standard and automated culture-based methods are available and widely used, these techniques take between 18 and 24 h to provide robust results. Faster techniques are needed to reduce the delay between test and results. Methods: Here we present a high throughput AST method using a new generation of tabletop scanning electron microscope, to evaluate bacterial ultra-structural modifications associated with susceptibilities to imipenem as a proof of concept. A total of 71 reference and clinical strains of Gram-negative bacteria were used to evaluate susceptibility toward imipenem after 30, 60, and 90 min of incubation. The length, width and electron density of bacteria were measured and compared between imipenem susceptible and resistant strains. Results: We correlated the presence of these morphological changes to the bacterial susceptibility and their absence to the bacterial resistance (e.g., Pseudomonas aeruginosa length without [2.24 ± 0.61 µm] and with [2.50 ± 0.68 µm] imipenem after 30 min [p = 3.032E-15]; Escherichia coli width without [0.92 ± 0.07 µm] and with [1.28 ± 0.19 µm] imipenem after 60 min [p = 1.242E-103]). We validated our method by a blind test on a series of 58 clinical isolates where all strains were correctly classified as susceptible or resistant toward imipenem. Conclusion: This method could be a potential tool for rapidly identifying carbapenem-resistance in Enterobacterales in clinical microbiology laboratories in <2 h, allowing the empirical treatment of patients to be rapidly adjusted.

3.
Clin Microbiol Infect ; 27(1): 128.e1-128.e7, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32979576

RESUMEN

OBJECTIVES: A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the current coronavirus disease 2019 global pandemic. Only a few laboratories routinely isolate the virus, which is because the current co-culture strategy is highly time-consuming and requires a biosafety level 3 laboratory. This work aimed to develop a new high-throughput isolation strategy using novel technologies for rapid and automated isolation of SARS-CoV-2. METHODS: We used an automated microscope based on high-content screening (HCS), and we applied specific image analysis algorithms targeting cytopathic effects of SARS-CoV-2 on Vero E6 cells. A randomized panel of 104 samples, including 72 that tested positive by RT-PCR and 32 that tested negative, were processed with our HCS strategy and were compared with the classical isolation procedure. RESULTS: The isolation rate was 43% (31/72) with both strategies on RT-PCR-positive samples and was correlated with the initial RNA viral load in the samples, in which we obtained a positivity threshold of 27 Ct. Co-culture delays were shorter with the HCS strategy, where 80% (25/31) of the positive samples were recovered by the third day of co-culture, compared with only 26% (8/30) with the classic strategy. Moreover, only the HCS strategy allowed us to recover all the positive samples (31 with HCS versus 27 with classic strategy) after 1 week of co-culture. CONCLUSIONS: This system allows the rapid and automated screening of clinical samples with minimal operator workload, which reduces the risk of contamination and paves the way for future applications in clinical microbiology, such as large-scale drug susceptibility testing.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , ARN Viral/análisis , SARS-CoV-2/aislamiento & purificación , Animales , Automatización de Laboratorios , Biomarcadores/análisis , COVID-19/virología , Chlorocebus aethiops , Hospitalización , Humanos , Microscopía/métodos , Nasofaringe/virología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , SARS-CoV-2/genética , Manejo de Especímenes/métodos , Células Vero , Carga Viral
4.
Front Microbiol ; 11: 2014, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973730

RESUMEN

Electron microscopy is a powerful tool in the field of microbiology. It has played a key role in the rapid diagnosis of viruses in patient samples and has contributed significantly to the clarification of virus structure and function, helping to guide the public health response to emerging viral infections. In the present study, we used scanning electron microscopy (SEM) to study the infectious cycle of SARS-CoV-2 in Vero E6 cells and we controlled some key findings by classical transmission electronic microscopy (TEM). The replication cycle of the virus was followed from 1 to 36 h post-infection. Our results revealed that SARS-CoV-2 infected the cells through membrane fusion. Particles are formed in the peri-nuclear region from a budding of the endoplasmic reticulum-Golgi apparatus complex into morphogenesis matrix vesicae. New SARS-CoV-2 particles were expelled from the cells, through cell lysis or by fusion of virus containing vacuoles with the cell plasma membrane. Overall, this cycle is highly comparable to that of SARS-CoV. By providing a detailed and complete SARS-CoV-2 infectious cycle, SEM proves to be a very rapid and efficient tool compared to classical TEM.

5.
mSystems ; 5(3)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576649

RESUMEN

Giant viruses have large genomes, often within the size range of cellular organisms. This distinguishes them from most other viruses and demands additional effort for the successful recovery of their genomes from environmental sequence data. Here, we tested the performance of genome-resolved metagenomics on a recently isolated giant virus, Fadolivirus, by spiking it into an environmental sample from which two other giant viruses were isolated. At high spike-in levels, metagenome assembly and binning led to the successful genomic recovery of Fadolivirus from the sample. A complementary survey of the major capsid protein indicated the presence of other giant viruses in the sample matrix but did not detect the two isolated from this sample. Our results indicate that genome-resolved metagenomics is a valid approach for the recovery of near-complete giant virus genomes given that sufficient clonal particles are present. However, our data also underline that a vast majority of giant viruses remain currently undetected, even in an era of terabase-scale metagenomics.IMPORTANCE The discovery of large and giant nucleocytoplasmic large DNA viruses (NCLDV) with genomes in the megabase range and equipped with a wide variety of features typically associated with cellular organisms was one of the most unexpected, intriguing, and spectacular breakthroughs in virology. Recent studies suggest that these viruses are highly abundant in the oceans, freshwater, and soil, impact the biology and ecology of their eukaryotic hosts, and ultimately affect global nutrient cycles. Genome-resolved metagenomics is becoming an increasingly popular tool to assess the diversity and coding potential of giant viruses, but this approach is currently lacking validation.

6.
J Microbiol ; 58(5): 377-386, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32281049

RESUMEN

The study of the human gut microbiome is essential in microbiology and infectious diseases as specific alterations in the gut microbiome might be associated with various pathologies, such as chronic inflammatory disease, intestinal infection and colorectal cancer. To identify such dysregulations, several strategies are being used to create a repertoire of the microorganisms composing the human gut microbiome. In this study, we used the "microscomics" approach, which consists of creating an ultrastructural repertoire of all the cell-like objects composing stool samples from healthy donors using transmission electron microscopy (TEM). We used TEM to screen ultrathin sections of 8 resin-embedded stool samples. After exploring hundreds of micrographs, we managed to elaborate ultrastructural categories based on morphological criteria or features. This approach explained many inconsistencies observed with other techniques, such as metagenomics and culturomics. We highlighted the value of our culture-independent approach by comparing our microscopic images to those of cultured bacteria and those reported in the literature. This study helped to detect "minimicrobes" Candidate Phyla Radiation (CPR) for the first time in human stool samples. This "microscomics" approach is non-exhaustive but complements already existing approaches and adds important data to the puzzle of the microbiota.


Asunto(s)
Bacterias , Heces/microbiología , Microbioma Gastrointestinal , Bacterias/clasificación , Bacterias/ultraestructura , Voluntarios Sanos , Humanos
7.
J Clin Microbiol ; 58(5)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32132188

RESUMEN

Q fever, caused by Coxiella burnetii, is a worldwide zoonotic disease that may cause severe forms in humans and requires a specific and prolonged antibiotic treatment. Although current serological and molecular detection tools allow a reliable diagnosis of the disease, culture of C. burnetii strains is mandatory to assess their susceptibility to antibiotics and sequence their genome in order to optimize patient management and epidemiological studies. However, cultivating this fastidious microorganism is difficult and restricted to reference centers, as it requires biosafety level 3 laboratories and relies on cell culture performed by experienced technicians. In addition, the culture yield is low, which results in a small number of isolates being available. In this work, we developed a novel high-content screening (HCS) isolation strategy based on optimized high-throughput cell culture and automated microscopic detection of infected cells with specifically designed algorithms targeting cytopathic effects. This method was more efficient than the shell vial assay, at the level of time dependency, when applied to both frozen specimens (7 isolates recovered by HCS only, sensitivity 91% versus 78% for shell vial) and fresh samples (1 additional isolate using HCS, sensitivity 7% versus 5% for shell vial), for which most strains were recovered more rapidly with the new technique. In addition, detecting positive cultures by an automated microscope reduced the need for expertise and saved 24% of technician working time. Application of HCS to antibiotic susceptibility testing of 12 strains demonstrated that it was as efficient as the standard procedure that combines shell vial culture and quantitative PCR.


Asunto(s)
Coxiella burnetii , Fiebre Q , Antibacterianos/farmacología , Coxiella burnetii/genética , Humanos , Fiebre Q/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
J Vis Exp ; (152)2019 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-31710032

RESUMEN

During the amoeba co-culture process, more than one virus may be isolated in a single well. We previously solved this issue by end point dilution and/or fluorescence activated cell sorting (FACS) applied to the viral population. However, when the viruses in the mixture have similar morphologic properties and one of the viruses multiplies slowly, the presence of two viruses is discovered at the stage of genome assembly and the viruses cannot be separated for further characterization. To solve this problem, we developed a single cell micro-aspiration procedure that allows for separation and cloning of highly similar viruses. In the present work, we present how this alternative strategy allowed us to separate the small viral subpopulations of Clandestinovirus ST1 and Usurpativirus LCD7, giant viruses that grow slowly and do not lead to amoebal lysis compared to the lytic and fast-growing Faustovirus. Purity control was assessed by specific gene amplification and viruses were produced for further characterization.


Asunto(s)
Amoeba/virología , Citometría de Flujo/métodos , Virus Gigantes/aislamiento & purificación , Análisis de la Célula Individual/métodos , Succión
9.
Commun Biol ; 2: 216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31240254

RESUMEN

The race to discover and isolate giant viruses began 15 years ago. Metagenomics is counterbalancing coculture, with the detection of giant virus genomes becoming faster as sequencing technologies develop. Since the discovery of giant viruses, many efforts have been made to improve methods for coculturing amebas and giant viruses, which remains the key engine of isolation of these microorganisms. However, these techniques still lack the proper tools for high-speed detection. In this paper, we present advances in the isolation of giant viruses. A new strategy was developed using a high-throughput microscope for real-time monitoring of cocultures using optimized algorithms targeting infected amebas. After validating the strategy, we adapted a new tabletop scanning electron microscope for high-speed identification of giant viruses directly from culture. The speed and isolation rate of this strategy has raised the coculture to almost the same level as sequencing techniques in terms of detection speed and sensitivity.


Asunto(s)
Virus Gigantes/aislamiento & purificación , Acanthamoeba/virología , Fluorescencia , Virus Gigantes/genética , Virus Gigantes/patogenicidad , Microscopía Electrónica de Rastreo , Replicación Viral
10.
Sci Rep ; 9(1): 2077, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765857

RESUMEN

The association between Clostridium species identification from stool samples in preterm neonates and the occurrence of necrotizing enterocolitis has been increasingly reported. To confirm the specific impact of Clostridium butyricum in this pathology, selective culture procedure was used for Clostridia isolation. Whole-genome analysis was employed to investigate genomic relationships between isolates. Stool samples from present study, as well as from previously investigated cases, were implicated including 88 from preterm neonates with necrotizing enterocolitis and 71 from matched controls. Quantitative real-time polymerase chain reaction was performed to evaluate the presence of C. butyricum from stools of new cases. Clostridium species prevalence isolated by culture was compared between patients with necrotizing enterocolitis and controls. By combining results of both culture and quantitative polymerase chain reaction methods, C. butyricum was significantly more frequent in stool samples from preterm neonates with necrotizing enterocolitis than in controls. Whole-genome analysis of 81 genomes including 58 neonates' isolates revealed that cases were clustered depending on geographical origin of isolation. Controls isolates presented genomic relations with that of patients suggesting a mechanism of asymptomatic carriage. Overall, this suggests an epidemiology comparable to that observed in Clostridium difficile colitis in adults.


Asunto(s)
Clostridium butyricum/genética , Clostridium butyricum/aislamiento & purificación , Enterocolitis Necrotizante/microbiología , Clostridium/genética , Clostridium butyricum/metabolismo , Enterocolitis Necrotizante/genética , Heces/microbiología , Femenino , Enfermedades Fetales/microbiología , Francia/epidemiología , Humanos , Recién Nacido , Enfermedades del Recién Nacido/microbiología , Recien Nacido Prematuro , Masculino
11.
Viruses ; 8(11)2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27827884

RESUMEN

Most viruses are known for the ability to cause symptomatic diseases in humans and other animals. The discovery of Acanthamoeba polyphaga mimivirus and other giant amoebal viruses revealed a considerable and previously unknown area of uncharacterized viral particles. Giant viruses have been isolated from various environmental samples collected from very distant geographic places, revealing a ubiquitous distribution. Their morphological and genomic features are fundamental elements for classifying them. Herein, we report the isolation and draft genome of Cedratvirus, a new amoebal giant virus isolated in Acanthamoeba castellanii, from an Algerian environmental sample. The viral particles are ovoid-shaped, resembling Pithovirus sibericum, but differing notably in the presence of two corks at each extremity of the virion. The draft genome of Cedratvirus-589,068 base pairs in length-is a close relative of the two previously described pithoviruses, sharing 104 and 113 genes with P. sibericum and Pithovirus massiliensis genomes, respectively. Interestingly, analysis of these viruses' core genome reveals that only 21% of Cedratvirus genes are involved in best reciprocal hits with the two pithoviruses. Phylogeny reconstructions and comparative genomics indicate that Cedratvirus is most closely related to pithoviruses, and questions their membership in an enlarged putative Pithoviridae family.


Asunto(s)
Acanthamoeba castellanii/virología , Virus Gigantes/clasificación , Virus Gigantes/genética , Filogenia , Argelia , ADN Viral/química , ADN Viral/genética , Microbiología Ambiental , Genoma Viral , Virus Gigantes/aislamiento & purificación , Virus Gigantes/ultraestructura , Análisis de Secuencia de ADN , Virión/ultraestructura
12.
J Vis Exp ; (112)2016 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-27341059

RESUMEN

The isolation of giant viruses is of great interest in this new era of virology, especially since these giant viruses are related to protists. Giant viruses may be potentially pathogenic for many species of protists. They belong to the recently described order of Megavirales. The new lineage Faustovirus that has been isolated from sewage samples is distantly related to the mammalian pathogen African swine fever virus. This virus is also specific to its amoebal host, Vermamoeba vermiformis, a protist common in health care water systems. It is crucial to continue isolating new Faustovirus genotypes in order to enlarge its genotype collection and study its pan-genome. We developed new strategies for the isolation of additional strains by improving the use of antibiotic and antifungal combinations in order to avoid bacterial and fungal contaminations of the amoeba co-culture and favoring the virus multiplication. We also implemented a new starvation medium to maintain V. vermiformis in optimal conditions for viruses co-culture. Finally, we used flow cytometry rather than microscopic observation, which is time-consuming, to detect the cytopathogenic effect. We obtained two isolates from sewage samples, proving the efficiency of this method and thus widening the collection of Faustoviruses, to better understand their environment, host specificity and genetic content.


Asunto(s)
Virus/aislamiento & purificación , Amoeba , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA