Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(1): e0276351, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649296

RESUMEN

BACKGROUND: The recent outbreaks of Ebola virus disease (EVD) in Uganda and the Marburg virus disease (MVD) in Ghana reflect a persisting threat of Filoviridae to the global health community. Characteristic of Filoviridae are not just their high case fatality rates, but also that corpses are highly contagious and prone to cause infections in the absence of appropriate precautions. Vaccines against the most virulent Ebolavirus species, the Zaire ebolavirus (ZEBOV) are approved. However, there exists no approved vaccine or treatment against the Sudan ebolavirus (SUDV) which causes the current outbreak of EVD. Hence, the control of the outbreak relies on case isolation, safe funeral practices, and contact tracing. So far, the effectiveness of these control measures was studied only separately by epidemiological models, while the impact of their interaction is unclear. METHODS AND FINDINGS: To sustain decision making in public health-emergency management, we introduce a predictive model to study the interaction of case isolation, safe funeral practices, and contact tracing. The model is a complex extension of an SEIR-type model, and serves as an epidemic preparedness tool. The model considers different phases of the EVD infections, the possibility of infections being treated in isolation (if appropriately diagnosed), in hospital (if not properly diagnosed), or at home (if the infected do not present to hospital for whatever reason). It is assumed that the corpses of those who died in isolation are buried with proper safety measures, while those who die outside isolation might be buried unsafely, such that transmission can occur during the funeral. Furthermore, the contacts of individuals in isolation will be traced. Based on parameter estimates from the scientific literature, the model suggests that proper diagnosis and hence isolation of cases has the highest impact in reducing the size of the outbreak. However, the combination of case isolation and safe funeral practices alone are insufficient to fully contain the epidemic under plausible parameters. This changes if these measures are combined with contact tracing. In addition, shortening the time to successfully trace back contacts contribute substantially to contain the outbreak. CONCLUSIONS: In the absence of an approved vaccine and treatment, EVD management by proper and fast diagnostics in combination with epidemic awareness are fundamental. Awareness will particularly facilitate contact tracing and safe funeral practices. Moreover, proper and fast diagnostics are a major determinant of case isolation. The model introduced here is not just applicable to EVD, but also to other viral hemorrhagic fevers such as the MVD or the Lassa fever.


Asunto(s)
Ebolavirus , Epidemias , Fiebre Hemorrágica Ebola , Enfermedad del Virus de Marburg , Humanos , Animales , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Trazado de Contacto , Brotes de Enfermedades/prevención & control
2.
PLoS One ; 16(7): e0253758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270576

RESUMEN

BACKGROUND: Governments across the globe responded with different strategies to the COVID-19 pandemic. While some countries adopted measures, which have been perceived controversial, others pursued a strategy aiming for herd immunity. The latter is even more controversial and has been called unethical by the WHO Director-General. Inevitably, without proper control measures, viral diversity increases and multiple infectious exposures become common, when the pandemic reaches its maximum. This harbors not only a potential threat overseen by simplified theoretical arguments in support of herd immunity, but also deserves attention when assessing response measures to increasing numbers of infection. METHODS AND FINDINGS: We extend the simulation model underlying the pandemic preparedness web interface CovidSim 1.1 (http://covidsim.eu/) to study the hypothetical effect of increased morbidity and mortality due to 'multi-infections', either acquired at by successive infective contacts during the course of one infection or by a single infective contact with a multi-infected individual. The simulations are adjusted to reflect roughly the situation in the USA. We assume a phase of general contact reduction ("lockdown") at the beginning of the epidemic and additional case-isolation measures. We study the hypothetical effects of varying enhancements in morbidity and mortality, different likelihoods of multi-infected individuals to spread multi-infections and different susceptibility to multi-infections in different disease phases. It is demonstrated that multi-infections lead to a slight reduction in the number of infections, as these are more likely to get isolated due to their higher morbidity. However, the latter substantially increases the number of deaths. Furthermore, simulations indicate that a potential second lockdown can substantially decrease the epidemic peak, the number of multi-infections and deaths. CONCLUSIONS: Enhanced morbidity and mortality due to multiple disease exposure is a potential threat in the COVID-19 pandemic that deserves more attention. Particularly it underlines another facet questioning disease management strategies aiming for herd immunity.


Asunto(s)
COVID-19/epidemiología , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Inmunidad Colectiva , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/transmisión , Humanos , Modelos Estadísticos , Mortalidad/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...