Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1154372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235036

RESUMEN

Low availability of phosphorus (P) in both acidic and alkaline soils is a major problem for sustainable improvement in wheat crops yield. Optimization of crops productivity can be achieved by increasing the bioavailability of P by phosphate solubilizing Actinomycetota (PSA). However, their effectiveness may vary with changing agro-climatic conditions. In this regard, a greenhouse experiment was conducted to assess the interaction inoculation of five potential PSA (P16-P18-BC3-BC10 and BC11) and RPs (RP1- RP2-RP3 and RP4) on the growth and yield of wheat crop in unsterilized P- deficient alkaline and acidic soils. Their performance was compared with single super phosphate (TSP) and reactive RP (BG4). The in-vitro tests showed that all PSA colonize wheat root and form a strong biofilm except Streptomyces anulatus strain P16. Our findings revealed that all PSA significantly improve the shoot/root dry weights, spike biomass, chlorophyll contents as well as nutrients uptake in plants fertilized with RP3 and RP4. However, the combined application of Nocardiopsis alba BC11 along with RP4 in alkaline soil, was effective in optimizing wheat yield attributes and improve the yield biomass up to 19.7% as compared to the triple superphosphate (TSP). This study supports the view that the inoculation with Nocardiopsis alba BC11 has a broad RP solubilization and could alleviate the agricultural losses due to P limitation in acidic and alkaline soils.

2.
Microbiol Res ; 261: 127059, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35584559

RESUMEN

The growing interest in low-input agriculture in recent years has focused the use of microbial biofertilizers to improve plant growth and yield through a better mobilization of indigenous source of key nutrients such as nitrogen, phosphorus, potassium etc. In this context, soil microorganisms especially Actinobacteria might play an important role. With their multifunctional activities, they are involved in nutrient cycling, soil quality and crop productivity as well as plant health which make them not only the eco-friendly alternative for agriculture but also for humankind. Bearing this in mind, it is primordial to further explore the special link between these microorganisms and soil -plant ecosystems. Therefore, this review discusses the importance of Actinobacteria as microbial biofertilizers and highlights the future needs and challenges for using them for sustaining crop. The patents and scientific literature analysis from 2000 to 2020 show that 16 patents claiming Actinobacteria as biocontrol or biofertilizer in agriculture and 949 indexed research articles related to Actinobacteria effect on plant growth and phosphate solubilization have been published. Furthermore, Actinobacteria ability to increase growth and yield of staple crops such as wheat maize, tomato, rice, and chickpea plant have been highlighted. Much more effort and progress are expected in the industrial development of actinobacterial bioinoculants as areas such as synthetic biology and nano-biotechnology advance.


Asunto(s)
Actinobacteria , Fertilizantes , Agricultura , Bacterias , Productos Agrícolas , Ecosistema , Fertilizantes/microbiología , Suelo , Microbiología del Suelo
3.
Microorganisms ; 9(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668691

RESUMEN

Soil fertility and plant nutrition require an adequate management of essential macronutrients such as potassium (K) and phosphorus (P), which are mandatory for plant development. Bioleaching of K and P bearing minerals improves their chemical weathering and increases the performance of the biofertilization strategies. In this study, in vitro and greenhouse experiments were carried out to investigate P and K solubilization traits of nine Actinobacteria (P13, P14, P15, P16, P17, P18, BC3, BC10, and BC11) under fertilization with rock phosphate (RP). K and P solubilization were evaluated on Alexandrov and NBRIP media containing mica and six RP samples, respectively. The actinobacterial strains were able to solubilize K in Alexandrov medium supplemented with RP. However, when soluble P was used instead of RP, only four strains of Actinobacteria (Streptomyces alboviridis P18-Streptomyces griseorubens BC3-Streptomyces griseorubens BC10 and Nocardiopsis alba BC11) solubilized K. The solubilization values of K ranged from 2.6 to 41.45 mg/L while those of P varied from 0.1 to 32 mg/L. Moreover, all strains were able to produce IAA, siderophore, HCN, and ammonia and significantly improved the germination rate and the vigor index of wheat. The pot experiments revealed that four strains (Streptomyces alboviridis P18, Streptomyces griseorubens BC3, Streptomyces griseorubens BC10, and Nocardiopsis alba BC11) significantly improved the growth parameters of wheat, namely root length (1.75-23.84%), root volume (41.57-71.46%), root dry weight (46.89-162.41%), shoot length (8.92-23.56%), and shoot dry weight (2.56-65.68%) compared to the uninoculated control. These findings showed that Streptomyces griseorubens BC10 and Nocardiopsis alba BC11 are promising candidates for the implementation of efficient biofertilization strategies to improve soil fertility and plant yield under rock P and rock K fertilization.

4.
Plants (Basel) ; 10(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374129

RESUMEN

A total of 14 Rhizobium strains were isolated from lentil accessions grown at the ICARDA experimental research station at Marchouch in Morocco and used for molecular characterization and symbiotic efficiency assessment. Individual phylogenetic analysis using the 16S rRNA gene, house-keeping genes rpoB, recA, and gyrB, and symbiotic genes nodD and nodA along with Multilocus Sequence Analysis (MLSA) of the concatenated genes (16S rRNA-rpoB-recA-gyrB) was carried out for the identification and clustering of the isolates. The symbiotic efficiency of the strains was assessed on three Moroccan lentil cultivars (Bakria, Chakkouf, and Zaria) based on the number of nodules, plant height, plant dry weight, and total nitrogen content in leaves. The results showed that the individual phylogenetic analysis clustered all the strains into Rhizobium laguerreae and Rhizobium leguminosarum with sequence similarity ranging from 94 to 100%, except one strain which clustered with Mesorhizobium huakuii with sequence similarity of 100%. The MLSA of the concatenated genes and the related percentages of similarity clustered these strains into two groups of Rhizobium species, with one strain as a new genospecies when applying the threshold of 96%. For symbiotic efficiency, the Bakria variety showed the best association with 10 strains compared to its non-inoculated control (p-value ≤ 0.05), followed by Chakkouf and Zaria. The present study concluded that the genetic diversity and the symbiotic efficiency of Rhizobium strains appeared to be mainly under the control of the lentil genotypes.

5.
Artículo en Inglés | MEDLINE | ID: mdl-31998701

RESUMEN

The production of biofertilizers at industrial level is a bottleneck because bacterial strains are generally developed and managed by research laboratories and not by production units. A seamless transition from laboratory to field application is, therefore necessary. This review provides an overview of the constraints that limiting the application or the implementation of Actinobacteria based biofertilizers especially in agricultural field and suggests solutions to overcome some of these limits. General processes of making and controlling the quality of the inoculum are briefly described. In addition, the paper underlines the opportunity of biofertilizers alone or in combination with chemical fertilizers. This review also, highlights the latest studies (until June 2019) and focuses on P-solubilization microorganisms mainly Actinobacteria. The biotechnology of these bacteria is a glimmer of hope for rock phosphate (RP) bioformulation. Since direct application of RP fertilizer is not always agronomically effective due to its sparse solubility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...