Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Neuromodulation ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38691076

RESUMEN

OBJECTIVES: Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is effective for treatment-resistant obsessive-compulsive disorder (OCD); however, DBS is associated with neurosurgical risks. Transcranial focused ultrasound (tFUS) is a newer form of noninvasive (ie, nonsurgical) stimulation that can modulate deeper regions, such as the VC/VS. tFUS parameters have just begun to be studied and have often not been compared in the same participants. We explored the effects of three VC/VS tFUS protocols and an entorhinal cortex (ErC) tFUS session on the VC/VS and cortico-striato-thalamo-cortical circuit (CSTC) in healthy individuals for later application to patients with OCD. MATERIALS AND METHODS: Twelve individuals participated in a total of 48 sessions of tFUS in this exploratory multisite, within-subject parameter study. We collected resting-state, reward task, and arterial spin-labeled (ASL) magnetic resonance imaging scans before and after ErC tFUS and three VC/VS tFUS sessions with different pulse repetition frequencies (PRFs), pulse widths (PWs), and duty cycles (DCs). RESULTS: VC/VS protocol A (PRF = 10 Hz, PW = 5 ms, 5% DC) was associated with increased putamen activation during a reward task (p = 0.003), and increased VC/VS resting-state functional connectivity (rsFC) with the anterior cingulate cortex (p = 0.022) and orbitofrontal cortex (p = 0.004). VC/VS protocol C (PRF = 125 Hz, PW = 4 ms, 50% DC) was associated with decreased VC/VS rsFC with the putamen (p = 0.017), and increased VC/VS rsFC with the globus pallidus (p = 0.008). VC/VS protocol B (PRF = 125 Hz, PW = 0.4 ms, 5% DC) was not associated with changes in task-related CSTC activation or rsFC. None of the protocols affected CSTC ASL perfusion. CONCLUSIONS: This study began to explore the multidimensional parameter space of an emerging form of noninvasive brain stimulation, tFUS. Our preliminary findings in a small sample suggest that VC/VS tFUS should continue to be investigated for future noninvasive treatment of OCD.

2.
Adv Mater ; : e2307123, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533973

RESUMEN

Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need for microbubbles, which cannot transverse many biological barriers due to their large size. Here, the authors introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles(GVs) that are referred to as 50 nmGVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to the authors' knowledge, the smallest stable, free-floating bubbles made to date. 50 nmGVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50 nmGVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. The authors anticipate that 50 nmGVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.

3.
ACS Appl Mater Interfaces ; 16(5): 5598-5612, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270979

RESUMEN

Imaging plays a critical role in all stages of cancer care from early detection to diagnosis, prognosis, and therapy monitoring. Recently, photoacoustic imaging (PAI) has started to emerge into the clinical realm due to its high sensitivity and ability to penetrate tissues up to several centimeters deep. Herein, we encapsulated indocyanine green J (ICGJ) aggregate, one of the only FDA-approved organic exogenous contrast agents that absorbs in the near-infrared range, at high loadings up to ∼40% w/w within biodegradable polymersomes (ICGJ-Ps) composed of poly(lactide-co-glycolide-b-polyethylene glycol) (PLGA-b-PEG). The small Ps hydrodynamic diameter of 80 nm is advantageous for in vivo applications, while directional conjugation with epidermal growth factor receptor (EGFR) targeting cetuximab antibodies renders molecular specificity. Even when exposed to serum, the ∼11 nm-thick membrane of the Ps prevents dissociation of the encapsulated ICGJ for at least 48 h with a high ratio of ICGJ to monomeric ICG absorbances (i.e., I895/I780 ratio) of approximately 5.0 that enables generation of a strong NIR photoacoustic (PA) signal. The PA signal of polymersome-labeled breast cancer cells is proportional to the level of cellular EGFR expression, indicating the feasibility of molecular PAI with antibody-conjugated ICGJ-Ps. Furthermore, the labeled cells were successfully detected with PAI in highly turbid tissue-mimicking phantoms up to a depth of 5 mm with the PA signal proportional to the amount of cells. These data show the potential of molecular PAI with ICGJ-Ps for clinical applications such as tumor margin detection, evaluation of lymph nodes for the presence of micrometastasis, and laparoscopic imaging procedures.


Asunto(s)
Inmunoconjugados , Técnicas Fotoacústicas , Verde de Indocianina/química , Medios de Contraste/química , Análisis Espectral , Imagen Molecular , Receptores ErbB , Técnicas Fotoacústicas/métodos
4.
IEEE Trans Comput Imaging ; 9: 367-382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37997603

RESUMEN

Spatial variation in sound speed causes aberration in medical ultrasound imaging. Although our previous work has examined aberration correction in the presence of a spatially varying sound speed, practical implementations were limited to layered media due to the sound speed estimation process involved. Unfortunately, most models of layered media do not capture the lateral variations in sound speed that have the greatest aberrative effect on the image. Building upon a Fourier split-step migration technique from geophysics, this work introduces an iterative sound speed estimation and distributed aberration correction technique that can model and correct for aberrations resulting from laterally varying media. We first characterize our approach in simulations where the scattering in the media is known a-priori. Phantom and in-vivo experiments further demonstrate the capabilities of the iterative correction technique. As a result of the iterative correction scheme, point target resolution improves by up to a factor of 4 and lesion contrast improves by up to 10.0 dB in the phantom experiments presented.

5.
Sci Rep ; 13(1): 13403, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591991

RESUMEN

The neuromodulation effect of low-intensity focused ultrasound (LIFU) is highly target-specific. Unintended off-target neuronal excitation can be elicited when the beam focusing accuracy and resolution are limited, whereas the resulted side effect has not been evaluated quantitatively. There is also a lack of methods addressing the minimization of such side effects. Therefore, this work introduces a computational model of unintended neuronal excitation during LIFU neuromodulation, which evaluates the off-target activation area (OTAA) by integrating an ultrasound field model with the neuronal spiking model. In addition, a phased array beam focusing scheme called constrained optimal resolution beamforming (CORB) is proposed to minimize the off-target neuronal excitation area while ensuring effective stimulation in the target brain region. A lower bound of the OTAA is analytically approximated in a simplified homogeneous medium, which could guide the selection of transducer parameters such as aperture size and operating frequency. Simulations in a human head model using three transducer setups show that CORB markedly reduces the OTAA compared with two benchmark beam focusing methods. The high neuromodulation resolution demonstrates the capability of LIFU to effectively limit the side effects during neuromodulation, allowing future clinical applications such as treatment of neuropsychiatric disorders.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Simulación por Computador , Benchmarking , Encéfalo , Luz
6.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425762

RESUMEN

Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need of microbubbles, which cannot transverse many biological barriers due to their large size. Here we introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles that we referred to as 50nm GVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to our knowledge, the smallest stable, free-floating bubbles made to date. 50nm GVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50nm GVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. We anticipate that 50nm GVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.

7.
Adv Healthc Mater ; 12(26): e2300960, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37395729

RESUMEN

Bioresorbable perivascular scaffolds loaded with antiproliferative agents have been shown to enhance arteriovenous fistula (AVF) maturation by inhibiting neointimal hyperplasia (NIH). These scaffolds, which can mimic the three-dimensional architecture of the vascular extracellular matrix, also have an untapped potential for the local delivery of cell therapies against NIH. Hence, an electrospun perivascular scaffold from polycaprolactone (PCL) to support mesenchymal stem cell (MSC) attachment and gradual elution at the AVF's outflow vein is fabricated. Chronic kidney disease (CKD) in Sprague-Dawley rats is induced by performing 5/6th nephrectomy, then AVFs for scaffold application are created. The following groups of CKD rats are compared: no perivascular scaffold (i.e., control), PCL alone, and PCL+MSC scaffold. PCL and PCL+MSC significantly improve ultrasonographic (i.e., luminal diameter, wall-to-lumen ratio, and flow rate) and histologic (i.e., neointima-to-lumen ratio, neointima-to-media ratio) parameters compared to control, with PCL+MSC demonstrating further improvement in these parameters compared to PCL alone. Moreover, only PCL+MSC significantly reduces 18 F-fluorodeoxyglucose uptake on positron emission tomography. These findings suggest that adding MSCs promotes greater luminal expansion and potentially reduces the inflammatory process underlying NIH. The results demonstrate the utility of mechanical support loaded with MSCs at the outflow vein immediately after AVF formation to support maturation by minimizing NIH.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Células Madre Mesenquimatosas , Insuficiencia Renal Crónica , Ratas , Animales , Hiperplasia/patología , Ratas Sprague-Dawley , Neointima/patología , Implantes Absorbibles , Tomografía Computarizada por Rayos X , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/patología , Fístula Arteriovenosa/patología , Células Madre Mesenquimatosas/patología , Andamios del Tejido
8.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511512

RESUMEN

Mesenchymal stem cell (MSC)-seeded polymeric perivascular wraps have been shown to enhance arteriovenous fistula (AVF) maturation. However, the wraps' radiolucency makes their placement and integrity difficult to monitor. Through electrospinning, we infused gold nanoparticles (AuNPs) into polycaprolactone (PCL) wraps to improve their radiopacity and tested whether infusion affects the previously reported beneficial effects of the wraps on the AVF's outflow vein. Sprague Dawley rat MSCs were seeded on the surface of the wraps. We then compared the effects of five AVF treatments-no perivascular wrap (i.e., control), PCL wrap, PCL + MSC wrap, PCL-Au wrap, and PCL-Au + MSC wrap-on AVF maturation in a Sprague Dawley rat model of chronic kidney disease (n = 3 per group). Via micro-CT, AuNP-infused wraps demonstrated a significantly higher radiopacity compared to that of the wraps without AuNPs. Wraps with and without AuNPs equally reduced vascular stenoses, as seen via ultrasonography and histomorphometry. In the immunofluorescence analysis, representative MSC-seeded wraps demonstrated reduced neointimal staining for markers of infiltration with smooth muscle cells (α-SMA), inflammatory cells (CD45), and fibroblasts (vimentin) compared to that of the control and wraps without MSCs. In conclusion, AuNP infusion allows in vivo monitoring via micro-CT of MSC-seeded polymeric wraps over time, without compromising the benefits of the wrap for AVF maturation.


Asunto(s)
Fístula Arteriovenosa , Células Madre Mesenquimatosas , Nanopartículas del Metal , Ratas , Animales , Oro , Ratas Sprague-Dawley , Implantes Absorbibles , Fístula Arteriovenosa/terapia
9.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778365

RESUMEN

Background: Arteriovenous fistulas (AVFs) are a vital intervention for patients requiring hemodialysis, but they also contribute to overall mortality due to access malfunction. The most common cause of both AVF non-maturation and secondary failure is neointimal hyperplasia (NIH). Absorbable polycaprolactone (PCL) perivascular wraps can address these complications by incorporating drugs to attenuate NIH, such as rosuvastatin (ROSU), and metallic nanoparticles for visualization and device monitoring. Objectives: This study aimed to assess the impacts of gold nanoparticle (AuNP) and ROSU-loaded perivascular wraps on vasculature NIH and AVF maturation and patency in a chronic kidney disease rat model. Methods: Electrospun wraps containing combinations of PCL, AuNP, and ROSU were monitored for in vitro drug elution, nanoparticle release, tensile strength, and cell viability. Perivascular wraps were implanted in chronic kidney disease rats for in vivo ultrasound (US) and micro-computed tomography (mCT) imaging. AVF specimens were collected for histological analyses. Results: No difference in cell line viability was observed in ROSU-containing grafts. In vitro release studies of ROSU and AuNPs correlated with decreasing radiopacity over time on in vivo mCT analysis. The mCT study also demonstrated increased radiopacity in AuNP-loaded wraps compared with PCL and control. The addition of ROSU demonstrated decreased US and histologic measurements of NIH. Conclusions: The reduced NIH seen with ROSU-loading of perivascular wraps suggests a synergistic effect between mechanical support and anti-hyperplasia medication. Furthermore, the addition of AuNPs increased wrap radiopacity. Together, our results show that radiopaque, AuNP-, and ROSU-loaded PCL grafts induce AVF maturation and suppress NIH while facilitating optimal implanted device visualization.

10.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778466

RESUMEN

Background: To address high rates of arteriovenous fistula (AVF) failure, a mesenchymal stem cell (MSC)-seeded polymeric perivascular wrap has been developed to reduce neointimal hyperplasia (NIH) and enhance AVF maturation in a rat model. However, the wrap's radiolucency makes its placement and integrity difficult to monitor. Purpose: In this study, we infused gold nanoparticles (AuNPs) into the polymeric perivascular wrap to improve its radiopacity and tested the effect of infusion on the previously reported beneficial effects of the polymeric wrap on the AVF outflow vein. Materials and Methods: We fabricated a polymeric perivascular wrap made of polycaprolactone (PCL) infused with AuNPs via electrospinning. Sprague-Dawley rat mesenchymal stem cells (MSCs) were seeded on the surface of the wraps. We then compared the effect of five AVF treatments-no perivascular wrap (i.e., control), PCL wrap, PCL+MSC wrap, PCL-Au wrap, and PCL-Au+MSC wrap-on AVF maturation in a Sprague-Dawley rat model of chronic kidney disease (n=3 per group). Statistical significance was defined as p<.05, and one-way analysis of variance was performed using GraphPad Prism software. Results: On micro-CT, AuNP-infused wraps demonstrated significantly higher radiopacity compared to wraps without AuNPs. On ultrasonography, wraps with and without AuNPs equally reduced the wall-to-lumen ratio of the outflow vein, a marker of vascular stenosis. On histomorphometric analysis, wraps with and without AuNPs equally reduced the neointima-to- lumen ratio of the outflow vein, a measure of NIH. On immunofluorescence analysis, representative MSC-seeded wraps demonstrated reduced neointimal staining for markers of smooth muscle cells (α-SMA), inflammatory cells (CD45), and fibroblasts (vimentin) infiltration when compared to control and wraps without MSCs. Conclusion: Gold nanoparticle infusion allows the in vivo monitoring via micro-CT of a mesenchymal stem cell-seeded polymeric wrap over time without compromising the benefits of the wrap on arteriovenous fistula maturation. Summary Statement: Gold nanoparticle infusion enables in vivo monitoring via micro-CT of the placement and integrity over time of mesenchymal stem cell-seeded polymeric wrap supporting arteriovenous fistula maturation. Key Results: Gold nanoparticle (AuNP)-infused perivascular wraps demonstrated higher radiopacity on micro-CT compared with wraps without AuNPs after 8 weeks.AuNP-infused perivascular wraps equally improved the wall-to-lumen ratio of the outflow vein (a marker of vascular stenosis) when compared with wraps without AuNPs, as seen on US.AuNP-infused perivascular wraps equally reduced the neointima-to-lumen ratio of the outflow vein (a measure of neointimal hyperplasia) when compared with wraps without AuNPs, as seen on histomorphometry.

11.
Med Phys ; 49(4): 2212-2219, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35195908

RESUMEN

BACKGROUND: While microbubble contrast agents (MCAs) are commonly used in ultrasound (US), they are inherently limited to vascular targets due to their size. Alternatively, phase-changing nanodroplet contrast agents (PNCAs) can be delivered as nanoscale agents (i.e., small enough to extravasate), but when exposed to a US field of sufficient mechanical index (MI), they convert to MCAs, which can be visualized with high contrast using nonlinear US. PURPOSE: To investigate the effect of perfluorocarbon (PFC) core composition and presence of cholesterol in particle coatings on stability and image contrast generated from acoustic activation of PNCAs using high-frequency US suitable for clinical imaging. METHODS: PNCAs with varied core compositions (i.e., mixtures of perfluoropentane [C5] and/or perfluorohexane [C6]) and two coating formulations (i.e., with and without cholesterol) were characterized and investigated for thermal/temporal stability and postactivation, nonlinear US contrast in phantom and in vivo environments. Through hydrophone measurements and nonlinear numerical modeling, MI was estimated for pulse sequences used for PNCA activation. RESULTS: All PNCA compositions were characterized to have similar diameters (249-267 nm) and polydispersity (0.151-0.185) following fabrication. While PNCAs with majority C5 core composition showed higher levels of spontaneous signal (i.e., not due to US activation) in phantoms than C6-majority PNCAs, all compositions were stable during imaging experiments. When activating PNCAs with a 12.3-MHz US pulse (MI = 1.1), C6-core particles with cholesterol-free coatings (i.e., CF-C6-100 particles) generated a median contrast of 3.1, which was significantly higher (p < 0.001) than other formulations. Further, CF-C6-100 particles were activated in a murine model, generating US contrast ≥ $ \ge $ 3.4. CONCLUSION: C6-core PNCAs can provide high-contrast US imaging with minimal nonspecific activation in phantom and in vivo environments.


Asunto(s)
Medios de Contraste , Fluorocarburos , Acústica , Animales , Ratones , Microburbujas , Ultrasonografía/métodos
12.
PLoS One ; 16(12): e0260737, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34882719

RESUMEN

Modern ultrasound (US) imaging is increasing its clinical impact, particularly with the introduction of US-based quantitative imaging biomarkers. Continued development and validation of such novel imaging approaches requires imaging phantoms that recapitulate the underlying anatomy and pathology of interest. However, current US phantom designs are generally too simplistic to emulate the structure and variability of the human body. Therefore, there is a need to create a platform that is capable of generating well-characterized phantoms that can mimic the basic anatomical, functional, and mechanical properties of native tissues and pathologies. Using a 3D-printing technique based on stereolithography, we fabricated US phantoms using soft materials in a single fabrication session, without the need for material casting or back-filling. With this technique, we induced variable levels of stable US backscatter in our printed materials in anatomically relevant 3D patterns. Additionally, we controlled phantom stiffness from 7 to >120 kPa at the voxel level to generate isotropic and anisotropic phantoms for elasticity imaging. Lastly, we demonstrated the fabrication of channels with diameters as small as 60 micrometers and with complex geometry (e.g., tortuosity) capable of supporting blood-mimicking fluid flow. Collectively, these results show that projection-based stereolithography allows for customizable fabrication of complex US phantoms.


Asunto(s)
Fantasmas de Imagen , Impresión Tridimensional/instrumentación , Estereolitografía/instrumentación , Ultrasonografía/métodos , Hemodinámica , Humanos
13.
Nat Commun ; 12(1): 5410, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518530

RESUMEN

Photoacoustic (PA) imaging is a functional and molecular imaging technique capable of high sensitivity and spatiotemporal resolution at depth. Widespread use of PA imaging, however, is limited by currently available contrast agents, which either lack PA-signal-generation ability for deep imaging or their absorbance spectra overlap with hemoglobin, reducing sensitivity. Here we report on a PA contrast agent based on targeted liposomes loaded with J-aggregated indocyanine green (ICG) dye (i.e., PAtrace) that we synthesized, bioconjugated, and characterized to addresses these limitations. We then validated PAtrace in phantom, in vitro, and in vivo PA imaging environments for both spectral unmixing accuracy and targeting efficacy in a folate receptor alpha-positive ovarian cancer model. These study results show that PAtrace concurrently provides significantly improved contrast-agent quantification/sensitivity and SO2 estimation accuracy compared to monomeric ICG. PAtrace's performance attributes and composition of FDA-approved components make it a promising agent for future clinical molecular PA imaging.


Asunto(s)
Medios de Contraste/química , Verde de Indocianina/química , Liposomas/química , Imagen Molecular/métodos , Nanopartículas/química , Técnicas Fotoacústicas/métodos , Células 3T3 , Animales , Línea Celular Tumoral , Células Cultivadas , Femenino , Receptor 1 de Folato/química , Receptor 1 de Folato/metabolismo , Humanos , Ratones , Ratones Desnudos , Microscopía Electrónica de Transmisión/métodos , Nanopartículas/ultraestructura , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/metabolismo , Fantasmas de Imagen , Trasplante Heterólogo
14.
Commun Biol ; 3(1): 783, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335270

RESUMEN

Thermal ablation is a standard therapy for patients with hepatocellular carcinoma (HCC). Contemporary ablation devices are imperfect, as they lack tumor specificity. An ideal ablation modality would generate thermal energy only within tumoral tissue. Furthermore, as hyperthermia is known to influence tumor immunity, such a tumor-specific ablation modality may have the ability to favorably modulate the tumor immune landscape. Here we show a clinically relevant thermal ablation modality that generates tumor-specific hyperthermia, termed molecularly targeted photothermal ablation (MTPA), that is based upon the excellent localization of indocyanine green to HCC. In a syngeneic rat model, we demonstrate the tumor-specific hyperthermia generated by MTPA. We also show through spatial and transcriptomic profiling techniques that MTPA favorably modulates the intratumoral myeloid population towards tumor immunogenicity and diminishes the systemic release of oncogenic cytokines relative to conventional ablation modalities.


Asunto(s)
Carcinoma Hepatocelular/etiología , Inmunomodulación/efectos de la radiación , Neoplasias Hepáticas/etiología , Terapia Fototérmica/métodos , Animales , Biomarcadores de Tumor , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Expresión Génica , Hipertermia Inducida , Inmunomodulación/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Terapia Molecular Dirigida , Ratas , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación
15.
ACS Appl Mater Interfaces ; 11(50): 46437-46450, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31804795

RESUMEN

Clinical translation of photoacoustic imaging (PAI) has been limited by the lack of near-infrared (NIR) contrast agents with low toxicity required for regulatory approval. Herein, J aggregates of indocyanine green (ICG) with strong NIR absorbance were encapsulated at high loadings within small 77 nm polymersomes (nanocapsules) composed of poly(lactide-co-glycolide-b-poly(ethylene glycol)) (PLGA-b-PEG) bilayers, thus enabling PAI of of breast and ovarian cancer cells with high specificity and a sensitivity at the level of ∼100 total cells. All of the major components of the polymersomes are FDA approved and used in the clinic. During formation of polymersomes with a water-in-oil-in-water double emulsion process, loss of ICG from the ICG J aggregates was minimized by coating them with a layer of branched polyethylenimine and by providing excess "sacrificial" ICG to adsorb at the oil-water interfaces. The encapsulated J aggregates were protected against dissociation by the polymersome shell for 24 h in 100% fetal bovine serum, after which the polymersomes biodegraded and the J aggregates dissociated to ICG monomers.


Asunto(s)
Medios de Contraste/farmacología , Verde de Indocianina/farmacología , Imagen Molecular , Técnicas Fotoacústicas , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Línea Celular Tumoral , Medios de Contraste/química , Emulsiones/química , Emulsiones/farmacología , Femenino , Humanos , Verde de Indocianina/química , Ratones , Ratones Desnudos , Nanocápsulas/química , Aceites/química , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Polietilenglicoles/química , Poliglactina 910/química , Agua/química
16.
Biomed Opt Express ; 10(7): 3472-3483, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31360601

RESUMEN

Gold nanoparticles (AuNPs) below 10 nm in size can undergo renal clearance, which could facilitate their clinical translation. However, due to non-linear, direct relationship between their absorption and size, use of such "ultra-small" AuNPs as contrast agents for photoacoustic imaging (PAI) is challenging. This problem is complicated by the tendency of absorption for ultra-small AuNPs to be below the NIR range, which is optimal for in vivo imaging. Herein, we present 5-nm molecularly activated plasmonic nanosensors (MAPS) that produce a strong photoacoustic signal in labeled cancer cells in the NIR, demonstrating the feasibility of sensitive PAI with ultra-small AuNPs.

17.
Photoacoustics ; 14: 31-36, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31049286

RESUMEN

A variety of hematological diseases manifest in the bone marrow (BM), broadly characterized as BM failure (BMF). BMF can be caused by acute lymphoblastic leukemia (ALL), which results in an expansion of hypoxic regions in the BM. Because of this hypoxic presentation, there is potential for improved characterization of BMF through in vivo assessment of oxygenation in the BM cavity. Photoacoustic (PA) imaging can provide local assessment of intravascular oxygen saturation (SO2), which has been shown to correlate with pimonidazole-assessed hypoxia. This study introduces an optimized PA imaging technique to assess SO2 within the femoral BM cavity through disease progression in a murine model of ALL. Results show a statistically significant difference with temporal changes in SO2 (from baseline) between control and diseased cohorts, demonstrating the potential of PA imaging for noninvasive, label-free monitoring of BMF diseases.

18.
IEEE Trans Med Imaging ; 38(2): 561-571, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30207951

RESUMEN

As photoacoustic (PA) imaging makes its way into the clinic, the accuracy of PA-based metrics becomes increasingly important. To address this need, a method combining finite-element-based local fluence correction (LFC) with signal-to-noise-ratio (SNR) regularization was developed and validated to accurately estimate oxygen saturation (SO2) in tissue. With data from a Vevo LAZR system, performance of our LFC approach was assessed in ex vivo blood targets (37.6%-99.6% SO2) and in vivo rat arteries. Estimation error of absolute SO2 and change in SO2 reduced from 10.1% and 6.4%, respectively, without LFC to 2.8% and 2.0%, respectively, with LFC, while the accuracy of the LFC method was correlated with the number of wavelengths acquired. This paper demonstrates the need for an SNR-regularized LFC to accurately quantify SO2 with PA imaging.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Oxígeno/sangre , Técnicas Fotoacústicas/métodos , Animales , Análisis de Elementos Finitos , Arteria Hepática/diagnóstico por imagen , Hígado/irrigación sanguínea , Hígado/diagnóstico por imagen , Masculino , Ratas , Relación Señal-Ruido , Ultrasonografía/métodos
19.
Nanotechnology ; 29(16): 165101, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29438105

RESUMEN

OBJECTIVE: To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. MATERIALS AND METHODS: Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ∼82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 µg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. RESULTS: MSCs labeled with SPIO@Au at 4 µg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. CONCLUSIONS: Our results demonstrated the feasibility of tracking carotid artery-injected SPIO@Au-labeled MSCs in vivo via MR and PA imaging.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/administración & dosificación , Técnicas Fotoacústicas/métodos , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Glioma/patología , Oro/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inyecciones Intraarteriales , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Tamaño de la Partícula , Coloración y Etiquetado
20.
Cell Rep ; 21(10): 2785-2795, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212026

RESUMEN

Angiogenesis inhibitors are important for cancer therapy, but clinically approved anti-angiogenic agents have shown only modest efficacy and can compromise wound healing. This necessitates the development of novel anti-angiogenesis therapies. Here, we show significantly increased EGFL6 expression in tumor versus wound or normal endothelial cells. Using a series of in vitro and in vivo studies with orthotopic and genetically engineered mouse models, we demonstrate the mechanisms by which EGFL6 stimulates tumor angiogenesis. In contrast to its antagonistic effects on tumor angiogenesis, EGFL6 blockage did not affect normal wound healing. These findings have significant implications for development of anti-angiogenesis therapies.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas de Neoplasias/metabolismo , Péptidos/metabolismo , Animales , Western Blotting , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Quitosano/metabolismo , Femenino , Glicoproteínas/genética , Humanos , Técnicas In Vitro , Integrinas/genética , Integrinas/metabolismo , Ratones , Ratones Noqueados , Nanopartículas/química , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Péptidos/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...