Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37548995

RESUMEN

Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell-cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell-cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern ('cell doublet'). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell-matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.


Asunto(s)
Células Epiteliales , Fenómenos Mecánicos , Células Epiteliales/fisiología , Epitelio , Adhesión Celular/fisiología , Elasticidad , Estrés Mecánico
2.
Nat Commun ; 14(1): 717, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759504

RESUMEN

The mechanical properties of biological tissues are key to their physical integrity and function. Although external loading or biochemical treatments allow the estimation of these properties globally, it remains difficult to assess how such external stimuli compare with cell-generated contractions. Here we engineer microtissues composed of optogenetically-modified fibroblasts encapsulated within collagen. Using light to control the activity of RhoA, a major regulator of cellular contractility, we induce local contractions within microtissues, while monitoring microtissue stress and strain. We investigate the regulation of these local contractions and their spatio-temporal distribution. We demonstrate the potential of our technique for quantifying tissue elasticity and strain propagation, before examining the possibility of using light to create and map local anisotropies in mechanically heterogeneous microtissues. Altogether, our results open an avenue to guide the formation of tissues while non-destructively charting their rheology in real time, using their own constituting cells as internal actuators.


Asunto(s)
Colágeno , Fibroblastos , Reología , Ingeniería de Tejidos/métodos
3.
Neuroimage ; 222: 117156, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32698027

RESUMEN

Functional Connectivity (FC) during resting-state or task conditions is not static but inherently dynamic. Yet, there is no consensus on whether fluctuations in FC may resemble isolated transitions between discrete FC states rather than continuous changes. This quarrel hampers advancing the study of dynamic FC. This is unfortunate as the structure of fluctuations in FC can certainly provide more information about developmental changes, aging, and progression of pathologies. We merge the two perspectives and consider dynamic FC as an ongoing network reconfiguration, including a stochastic exploration of the space of possible steady FC states. The statistical properties of this random walk deviate both from a purely "order-driven" dynamics, in which the mean FC is preserved, and from a purely "randomness-driven" scenario, in which fluctuations of FC remain uncorrelated over time. Instead, dynamic FC has a complex structure endowed with long-range sequential correlations that give rise to transient slowing and acceleration epochs in the continuous flow of reconfiguration. Our analysis for fMRI data in healthy elderly revealed that dynamic FC tends to slow down and becomes less complex as well as more random with increasing age. These effects appear to be strongly associated with age-related changes in behavioural and cognitive performance.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Conectoma , Desarrollo Humano/fisiología , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Adulto Joven
4.
Phys Rev Lett ; 122(16): 168101, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31075005

RESUMEN

The structural and functional organization of biological tissues relies on the intricate interplay between chemical and mechanical signaling. Whereas the role of constant and transient mechanical perturbations is generally accepted, several studies recently highlighted the existence of long-range mechanical excitations (i.e., waves) at the supracellular level. Here, we confine epithelial cell monolayers to quasi-one-dimensional geometries, to force the establishment of tissue-level waves of well-defined wavelength and period. Numerical simulations based on a self-propelled Voronoi model reproduce the observed waves and exhibit a phase transition between a global and a multinodal wave, controlled by the confinement size. We confirm experimentally the existence of such a phase transition, and show that wavelength and period are independent of the confinement length. Together, these results demonstrate the intrinsic origin of tissue oscillations, which could provide cells with a mechanism to accurately measure distances at the supracellular level.


Asunto(s)
Movimiento Celular , Modelos Biológicos , Animales , Perros , Fibronectinas/metabolismo , Células de Riñón Canino Madin Darby
5.
Exp Cell Res ; 378(1): 113-117, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30794802

RESUMEN

Since the emergence of mechanobiology, mechanical signals have been shown to influence almost every process in biology. Cells transduce mechanical signals into biochemical signaling pathways, adjust their behavior and/or phenotype before transmitting these signals to neighboring cells. Mechanical signals thus appear as information, which can be "written" by cells in the surrounding extracellular matrix, "transmitted" through it and "read" by other cells. This brief review summarizes our current understanding of the mechanisms regulating the tensional state of cells and tissues subjected to mechanical perturbations, prior to examining existing or potential experimental approaches to study these mechanisms.


Asunto(s)
Mecanorreceptores/metabolismo , Mecanotransducción Celular , Animales , Retroalimentación Fisiológica , Adhesiones Focales/metabolismo , Humanos , Mecanorreceptores/fisiología
6.
Sci Rep ; 8(1): 1464, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362476

RESUMEN

Cells are able to sense and react to their physical environment by translating a mechanical cue into an intracellular biochemical signal that triggers biological and mechanical responses. This process, called mechanotransduction, controls essential cellular functions such as proliferation and migration. The cellular response to an external mechanical stimulation has been investigated with various static and dynamic systems, so far limited to global deformations or to local stimulation through discrete substrates. To apply local and dynamic mechanical constraints at the single cell scale through a continuous surface, we have developed and modelled magneto-active substrates made of magnetic micro-pillars embedded in an elastomer. Constrained and unconstrained substrates are analysed to map surface stress resulting from the magnetic actuation of the micro-pillars and the adherent cells. These substrates have a rigidity in the range of cell matrices, and the magnetic micro-pillars generate local forces in the range of cellular forces, both in traction and compression. As an application, we followed the protrusive activity of cells subjected to dynamic stimulations. Our magneto-active substrates thus represent a new tool to study mechanotransduction in single cells, and complement existing techniques by exerting a local and dynamic stimulation, traction and compression, through a continuous soft substrate.


Asunto(s)
Hierro/farmacología , Mecanotransducción Celular , Análisis de la Célula Individual/métodos , Estrés Mecánico , Animales , Adhesión Celular , Movimiento Celular , Proliferación Celular , Fenómenos Magnéticos , Ratones , Células 3T3 NIH , Propiedades de Superficie
7.
Stem Cell Res Ther ; 8(1): 104, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28464938

RESUMEN

BACKGROUND: Satellite cells are quiescent resident muscle stem cells that present an important potential to regenerate damaged tissue. However, this potential is diminished once they are removed from their niche environment in vivo, prohibiting the long-term study and genetic investigation of these cells. This study therefore aimed to provide a novel biomaterial platform for the in-vitro culture of human satellite cells that maintains their stem-like quiescent state, an important step for cell therapeutic studies. METHODS: Human muscle satellite cells were isolated from two donors and cultured on soft biopolymeric films of controlled stiffness. Cell adhesive phenotype, maintenance of satellite cell quiescence and capacity for gene manipulation were investigated using FACS, western blotting, fluorescence microscopy and electron microscopy. RESULTS: About 85% of satellite cells cultured in vitro on soft biopolymer films for 3 days maintained expression of the quiescence marker Pax7, as compared with 60% on stiffer films and 50% on tissue culture plastic. The soft biopolymeric films allowed satellite cell culture for up to 6 days without renewing the media. These cells retained their stem-like properties, as evidenced by the expression of stem cell markers and reduced expression of differentiated markers. In addition, 95% of cells grown on these soft biopolymeric films were in the G0/G1 stage of the cell cycle, as opposed to those grown on plastic that became activated and began to proliferate and differentiate. CONCLUSIONS: Our study identifies a new biomaterial made of a biopolymer thin film for the maintenance of the quiescence state of muscle satellite cells. These cells could be activated at any point simply by replating them onto a plastic culture dish. Furthermore, these cells could be genetically manipulated by viral transduction, showing that this biomaterial may be further used for therapeutic strategies.


Asunto(s)
Células Madre Adultas/citología , Proliferación Celular , Cultivo Primario de Células/métodos , Células Satélite del Músculo Esquelético/citología , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/fisiología , Biopolímeros/farmacología , Diferenciación Celular , Células Cultivadas , Medios de Cultivo/química , Humanos , Masculino , Persona de Mediana Edad , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/fisiología , Andamios del Tejido/química
8.
Sci Rep ; 7: 41479, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134270

RESUMEN

In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Fibronectinas/metabolismo , Mioblastos/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Animales , Adhesión Celular , Técnicas de Cultivo de Célula , Línea Celular , Ratones , Mioblastos/citología , Unión Proteica , Transporte de Proteínas
9.
Int J Biol Macromol ; 97: 733-743, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28109813

RESUMEN

Fibronectin (FN) is a multifunctional glycoprotein of the extracellular matrix (ECM) playing critical roles in physiological and pathological cell processes like adhesion, migration, growth, and differentiation. These various functions of FN are modulated by its supramolecular state. Indeed, FN can polymerize into different types of assemblies like fibrils and aggregates. However, the mechanism of polymerization and the effects of such assemblies on cell behaviors still remain to be elucidated. Here we show that upon irreversible thermal denaturation, human blood plasma fibronectin forms high molecular weight aggregates. These compact and globular aggregates show amyloid features: they are stabilized by intermolecular b-sheets, they bind Thioflavin T and they are resistant to reducing and denaturing agents. Their characterization by electrospray ionization charge detection mass spectrometry shows that two populations can be distinguished according to the mass and charge density. Despite their amyloid features and the presence of hydrophobic patches on their surface, these aggregates are not toxic for cells. However, their binding abilities to gelatin and RGD are drastically decreased compare to native FN, suggesting possible effects on ECM-cell interactions.


Asunto(s)
Amiloide/química , Fibronectinas/sangre , Fibronectinas/química , Multimerización de Proteína , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Estructura Secundaria de Proteína , Desplegamiento Proteico , Temperatura
10.
Semin Cell Dev Biol ; 64: 171-180, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27670720

RESUMEN

The use of the adapted models to decipher patho-physiological mechanisms of human diseases is always a great challenge. This is of particular importance for early-onset myopathies, in which pathological mutations often impact not only on muscle structure and function but also on developmental processes. Mice are currently the main animal model used to study neuromuscular disorders including the early-onset myopathies. However strategies based on simple animal models and on transdisciplinary approaches exploring mechanical muscle cell properties emerge as attractive, non-exclusive alternatives. These new ways provide valuable opportunities to improve our knowledge on how mechanical, biochemical, and genetic/epigenetic cues modulate the formation, organization and function of muscle tissues. Here we provide an overview of how single cell and micro-tissue engineering in parallel to non-mammalian, Drosophila and zebrafish models could contribute to filling gaps in our understanding of pathogenic mechanisms underlying early-onset myopathies. We also discuss their potential impact on designing new diagnostic and therapeutic strategies.


Asunto(s)
Estudios Interdisciplinarios , Enfermedades Musculares/patología , Edad de Inicio , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Humanos , Ratones , Enfermedades Musculares/fisiopatología , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA