Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7021, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528044

RESUMEN

With the advent of distributed multi-sensory networks of devices, vast troves of real-time data can be gathered about our interactions with the built environment. These rich data sets can be mined to achieve improved and informed data-driven designs of buildings, neighborhoods, and potentially entire cities. Among those, integrated developments have the peculiarity of combining multiple functions within a compact space and, as such, behave as microcosms of a city that can help address the problem of urban sprawl and density. However, a general lack of data and framework about integrated developments hinders our ability to test design hypotheses about the complex interplay between heterogeneity in both space and function. Here, we apply a data-driven approach to analyze the joint influence of topology and function on user movement within a state-of-the-art integrated development in Singapore. Specifically, we leverage the network representation of the building and use movement data collected from 51 individuals over a month. We show evidence of correlation (40%) between the spatial network features and human movement at the building level. We are also able to quantify the relationship between the functional and spatial components of the integrated development through user movement. Previous studies have shown a 60% or higher correlation between the topology and human movement at the city or country scales. Our moderate correlation, therefore, implies that more factors influencing user movement are at play. The heterogeneity in the spatial function introduced trips with diverse origins and destinations. A further data-driven analysis integrating origins and destinations reveals both qualitative and quantitative means of studying the relationship between the built environment and the processes that take place in them.

2.
Front Robot AI ; 10: 1163185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228356

RESUMEN

The field of multi-robot systems (MRS) has recently been gaining increasing popularity among various research groups, practitioners, and a wide range of industries. Compared to single-robot systems, multi-robot systems are able to perform tasks more efficiently or accomplish objectives that are simply not feasible with a single unit. This makes such multi-robot systems ideal candidates for carrying out distributed tasks in large environments-e.g., performing object retrieval, mapping, or surveillance. However, the traditional approach to multi-robot systems using global planning and centralized operation is, in general, ill-suited for fulfilling tasks in unstructured and dynamic environments. Swarming multi-robot systems have been proposed to deal with such steep challenges, primarily owing to its adaptivity. These qualities are expressed by the system's ability to learn or change its behavior in response to new and/or evolving operating conditions. Given its importance, in this perspective, we focus on the critical importance of adaptivity for effective multi-robot system swarming and use it as the basis for defining, and potentially quantifying, swarm intelligence. In addition, we highlight the importance of establishing a suite of benchmark tests to measure a swarm's level of adaptivity. We believe that a focus on achieving increased levels of swarm intelligence through the focus on adaptivity will further be able to elevate the field of swarm robotics.

3.
Artif Life ; 29(1): 21-36, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222754

RESUMEN

There has been growing interest in the use of multi-robot systems in various tasks and scenarios. The main attractiveness of such systems is their flexibility, robustness, and scalability. An often overlooked yet promising feature is system modularity, which offers the possibility of harnessing agent specialization, while also enabling system-level upgrades. However, altering the agents' capacities can change the exploration-exploitation balance required to maximize the system's performance. Here, we study the effect of a swarm's heterogeneity on its exploration-exploitation balance while tracking multiple fast-moving evasive targets under the cooperative multi-robot observation of multiple moving targets framework. To this end, we use a decentralized search and tracking strategy with adjustable levels of exploration and exploitation. By indirectly tuning the balance, we first confirm the presence of an optimal balance between these two key competing actions. Next, by substituting slower moving agents with faster ones, we show that the system exhibits a performance improvement without any modifications to the original strategy. In addition, owing to the additional amount of exploitation carried out by the faster agents, we demonstrate that a heterogeneous system's performance can be further improved by reducing an agent's level of connectivity, to favor the conduct of exploratory actions. Furthermore, in studying the influence of the density of swarming agents, we show that the addition of faster agents can counterbalance a reduction in the overall number of agents while maintaining the level of tracking performance. Finally, we explore the challenges of using differentiated strategies to take advantage of the heterogeneous nature of the swarm.

4.
Front Robot AI ; 9: 865414, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795475

RESUMEN

In the study of collective animal behavior, researchers usually rely on gathering empirical data from animals in the wild. While the data gathered can be highly accurate, researchers have limited control over both the test environment and the agents under study. Further aggravating the data gathering problem is the fact that empirical studies of animal groups typically involve a large number of conspecifics. In these groups, collective dynamics may occur over long periods of time interspersed with excessively rapid events such as collective evasive maneuvers following a predator's attack. All these factors stress the steep challenges faced by biologists seeking to uncover the fundamental mechanisms and functions of social organization in a given taxon. Here, we argue that beyond commonly used simulations, experiments with multi-robot systems offer a powerful toolkit to deepen our understanding of various forms of swarming and other social animal organizations. Indeed, the advances in multi-robot systems and swarm robotics over the past decade pave the way for the development of a new hybrid form of scientific investigation of social organization in biology. We believe that by fostering such interdisciplinary research, a feedback loop can be created where agent behaviors designed and tested in robotico can assist in identifying hypotheses worth being validated through the observation of animal collectives in nature. In turn, these observations can be used as a novel source of inspiration for even more innovative behaviors in engineered systems, thereby perpetuating the feedback loop.

6.
Nat Commun ; 13(1): 1442, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301305

RESUMEN

How does the spread of behavior affect consensus-based collective decision-making among animals, humans or swarming robots? In prior research, such propagation of behavior on social networks has been found to exhibit a transition from simple contagion-i.e, based on pairwise interactions-to a complex one-i.e., involving social influence and reinforcement. However, this rich phenomenology appears so far limited to threshold-based decision-making processes with binary options. Here, we show theoretically, and experimentally with a multi-robot system, that such a transition from simple to complex contagion can also bed observed in an archetypal model of distributed decision-making devoid of any thresholds or nonlinearities. Specifically, we uncover two key results: the nature of the contagion-simple or complex-is tightly related to the intrinsic pace of the behavior that is spreading, and the network topology strongly influences the effectiveness of the behavioral transmission in ways that are reminiscent of threshold-based models. These results offer new directions for the empirical exploration of behavioral contagions in groups, and have significant ramifications for the design of cooperative and networked robot systems.


Asunto(s)
Modelos Teóricos , Red Social , Animales , Refuerzo en Psicología
7.
AI Ethics ; 2(4): 595-597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35098248

RESUMEN

Technology giants today preside over vast troves of user data that are heavily mined for profit. The concentration of such valuable data in private hands to serve mainly commercial interests must be questioned. In this article, we argue that if data is the new oil, Big Tech companies possess extensive, encompassing and granular data that is tantamount to premium oil. In contrast, governments, universities and think tanks undertake data collection efforts that are comparatively modest in scale, scope, duration and resolution and must contend with 'data dregs'. Viewed against the backdrop of the COVID-19 pandemic, this sharp data asymmetry is unfortunate because the data Big Tech monopolizes is invaluable for boosting epidemiological control, formulating government policies, enhancing social services, improving urban planning and refining public education. We explain why this state of extreme data inequity undermines societal benefit and subverts our quest for ethical AI. We also propose how it should be addressed through data sharing and Open Data initiatives.

9.
Sci Rep ; 11(1): 318, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431924

RESUMEN

Networks of collaboration are notoriously complex and the mechanisms underlying their evolution, although of high interest, are still not fully understood. In particular, collaboration networks can be used to model the interactions between scientists and analyze the circumstances that lead to successful research. This task is not trivial and conventional metrics, based on number of publications and number of citations of individual authors, may not be sufficient to provide a deep insight into the factors driving scientific success. However, network analysis techniques based on centrality measures and measures of the structural properties of the network are promising to that effect. In recent years, it has become evident that most successful research works are achieved by teams rather than individual researchers. Therefore, researchers have developed a keen interest in the dynamics of social groups. In this study, we use real world data from a Thai computer technology research center, where researchers collaborate on different projects and team up to produce a range of artifacts. For each artifact, a score that measures quality of research is available and shared between the researchers that contributed to its creation, according to their percentage of contribution. We identify several measures to quantify productivity and quality of work, as well as centrality measures and structural measures. We find that, at individual level, centrality metrics are linked to high productivity and quality of work, suggesting that researchers who cover strategic positions in the network of collaboration are more successful. At the team level, we show that the evolution in time of structural measures are also linked to high productivity and quality of work. This result suggests that variables such as team size, turnover rate, team compactness and team openness are critical factors that must be taken into account for the success of a team. The key findings of this study indicate that the success of a research institute needs to be assessed in the context of not just researcher or team level, but also on how the researchers engage in collaboration as well as on how teams evolve.

10.
Front Robot AI ; 8: 771520, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178430

RESUMEN

Multi-agent systems and multi-robot systems have been recognized as unique solutions to complex dynamic tasks distributed in space. Their effectiveness in accomplishing these tasks rests upon the design of cooperative control strategies, which is acknowledged to be challenging and nontrivial. In particular, the effectiveness of these strategies has been shown to be related to the so-called exploration-exploitation dilemma: i.e., the existence of a distinct balance between exploitative actions and exploratory ones while the system is operating. Recent results point to the need for a dynamic exploration-exploitation balance to unlock high levels of flexibility, adaptivity, and swarm intelligence. This important point is especially apparent when dealing with fast-changing environments. Problems involving dynamic environments have been dealt with by different scientific communities using theory, simulations, as well as large-scale experiments. Such results spread across a range of disciplines can hinder one's ability to understand and manage the intricacies of the exploration-exploitation challenge. In this review, we summarize and categorize the methods used to control the level of exploration and exploitation carried out by an multi-agent systems. Lastly, we discuss the critical need for suitable metrics and benchmark problems to quantitatively assess and compare the levels of exploration and exploitation, as well as the overall performance of a system with a given cooperative control algorithm.

11.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261064

RESUMEN

Barometers are among the oldest engineered sensors. Historically, they have been primarily used either as environmental sensors to measure the atmospheric pressure for weather forecasts or as altimeters for aircrafts. With the advent of microelectromechanical system (MEMS)-based barometers and their systematic embedding in smartphones and wearable devices, a vast breadth of new applications for the use of barometers has emerged. For instance, it is now possible to use barometers in conjunction with other sensors to track and identify a wide range of human activity classes. However, the effectiveness of barometers in the growing field of human activity recognition critically hinges on our understanding of the numerous factors affecting the atmospheric pressure, as well as on the properties of the sensor itself-sensitivity, accuracy, variability, etc. This review article thoroughly details all these factors and presents a comprehensive report of the numerous studies dealing with one or more of these factors in the particular framework of human activity tracking and recognition. In addition, we specifically collected some experimental data to illustrate the effects of these factors, which we observed to be in good agreement with the findings in the literature. We conclude this review with some suggestions on some possible future uses of barometric sensors for the specific purpose of tracking human activities.


Asunto(s)
Sistemas Microelectromecánicos , Monitoreo Fisiológico , Dispositivos Electrónicos Vestibles , Actividades Humanas , Humanos , Teléfono Inteligente
12.
Sci Rep ; 10(1): 18642, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122721

RESUMEN

As lockdowns and stay-at-home orders start to be lifted across the globe, governments are struggling to establish effective and practical guidelines to reopen their economies. In dense urban environments with people returning to work and public transportation resuming full capacity, enforcing strict social distancing measures will be extremely challenging, if not practically impossible. Governments are thus paying close attention to particular locations that may become the next cluster of disease spreading. Indeed, certain places, like some people, can be "super-spreaders". Is a bustling train station in a central business district more or less susceptible and vulnerable as compared to teeming bus interchanges in the suburbs? Here, we propose a quantitative and systematic framework to identify spatial super-spreaders and the novel concept of super-susceptibles, i.e. respectively, places most likely to contribute to disease spread or to people contracting it. Our proposed data-analytic framework is based on the daily-aggregated ridership data of public transport in Singapore. By constructing the directed and weighted human movement networks and integrating human flow intensity with two neighborhood diversity metrics, we are able to pinpoint super-spreader and super-susceptible locations. Our results reveal that most super-spreaders are also super-susceptibles and that counterintuitively, busy peripheral bus interchanges are riskier places than crowded central train stations. Our analysis is based on data from Singapore, but can be readily adapted and extended for any other major urban center. It therefore serves as a useful framework for devising targeted and cost-effective preventive measures for urban planning and epidemiological preparedness.


Asunto(s)
COVID-19/transmisión , Movimiento , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Portador Sano , Humanos , SARS-CoV-2/aislamiento & purificación , Singapur/epidemiología , Aislamiento Social , Transportes
14.
Opt Express ; 27(20): 27592-27609, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684524

RESUMEN

We study the propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an array of semiconductor carbon nanotubes at times much longer than the pulse duration, yet still shorter than the relaxation time in the system. The interaction of the electromagnetic field with the electronic subsystem of the medium is described by means of Maxwell's equations, taking into account the field inhomogeneity along the nanotube axis beyond the approximation of slowly varying amplitudes and phases. A model is proposed for the analysis of the dynamics of an electromagnetic pulse in the form of an effective equation for the vector potential of the field. Our numerical analysis demonstrates the possibility of a satisfactory description of the evolution of the pulse field at large times by means of a three-dimensional generalization of the sine-Gordon and double sine-Gordon equations.

15.
Sci Rep ; 9(1): 11242, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375742

RESUMEN

The lateral-line system that has evolved in many aquatic animals enables them to navigate murky fluid environments, locate and discriminate obstacles. Here, we present a data-driven model that uses artificial neural networks to process flow data originating from a stationary sensor array located away from an obstacle placed in a potential flow. The ability of neural networks to estimate complex underlying relationships between parameters, in the absence of any explicit mathematical description, is first assessed with two basic potential flow problems: single source/sink identification and doublet detection. Subsequently, we address the inverse problem of identifying an obstacle shape from distant measures of the pressure or velocity field. Using the analytical solution to the forward problem, very large training data sets are generated, allowing us to obtain the synaptic weights by means of a gradient-descent based optimization. The resulting neural network exhibits remarkable effectiveness in predicting unknown obstacle shapes, especially at relatively large distances for which classical linear regression models are completely ineffectual. These results have far-reaching implications for the design and development of artificial passive hydrodynamic sensing technology.

16.
Sci Adv ; 5(4): eaau0999, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30949570

RESUMEN

Animals, humans, and multi-robot systems operate in dynamic environments, where the ability to respond to changing circumstances is paramount. An effective collective response requires suitable information transfer among agents and thus critically depends on the interaction network. To investigate the influence of the network topology on collective response, we consider an archetypal model of distributed decision-making and study the capacity of the system to follow a driving signal for varying topologies and system sizes. Experiments with a swarm of robots reveal a nontrivial relationship between frequency of the driving signal and optimal network topology. The emergent collective response to slow-changing perturbations increases with the degree of the interaction network, but the opposite is true for the response to fast-changing ones. These results have far-reaching implications for the design and understanding of distributed systems: a dynamic rewiring of the interaction network is essential to effective collective operations at different time scales.

17.
Front Neurorobot ; 12: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977200

RESUMEN

Experience replay is one of the most commonly used approaches to improve the sample efficiency of reinforcement learning algorithms. In this work, we propose an approach to select and replay sequences of transitions in order to accelerate the learning of a reinforcement learning agent in an off-policy setting. In addition to selecting appropriate sequences, we also artificially construct transition sequences using information gathered from previous agent-environment interactions. These sequences, when replayed, allow value function information to trickle down to larger sections of the state/state-action space, thereby making the most of the agent's experience. We demonstrate our approach on modified versions of standard reinforcement learning tasks such as the mountain car and puddle world problems and empirically show that it enables faster, and more accurate learning of value functions as compared to other forms of experience replay. Further, we briefly discuss some of the possible extensions to this work, as well as applications and situations where this approach could be particularly useful.

18.
Sci Rep ; 7(1): 10388, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871122

RESUMEN

Social interaction increases significantly the performance of a wide range of cooperative systems. However, evidence that natural swarms limit the number of interactions suggests potentially detrimental consequences of excessive interaction. Using a canonical model of collective motion, we find that the collective response to a dynamic localized perturbation-emulating a predator attack-is hindered when the number of interacting neighbors exceeds a certain threshold. Specifically, the effectiveness in avoiding the predator is enhanced by large integrated correlations, which are known to peak at a given level of interagent interaction. From the network-theoretic perspective, we uncover the same interplay between number of connections and effectiveness in group-level response for two distinct decision-making models of distributed consensus operating over a range of static networks. The effect of the number of connections on the collective response critically depends on the dynamics of the perturbation. While adding more connections improves the response to slow perturbations, the opposite is true for fast ones. These results have far-reaching implications for the design of artificial swarms or interaction networks.

19.
Biomicrofluidics ; 9(5): 054112, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26487898

RESUMEN

The effective migration of amoeboid cells requires a fine regulation of cell-substratum adhesion. These entwined processes have been shown to be regulated by a host of biophysical and biochemical cues. Here, we reveal the pivotal role played by calcium-based mechanosensation in the active regulation of adhesion resulting in a high migratory adaptability. Using mechanotactically driven Dictyostelium discoideum amoebae, we uncover the existence of optimal mechanosensitive conditions-corresponding to specific levels of extracellular calcium-for persistent directional migration over physicochemically different substrates. When these optimal mechanosensitive conditions are met, noticeable enhancement in cell migration directionality and speed is achieved, yet with significant differences among the different substrates. In the same narrow range of calcium concentrations that yields optimal cellular mechanosensory activity, we uncovered an absolute minimum in cell-substratum adhesion activity, for all considered substrates, with differences in adhesion strength among them amplified. The blocking of the mechanosensitive ion channels with gadolinium-i.e., the inhibition of the primary mechanosensory apparatus-hampers the active reduction in substrate adhesion, thereby leading to the same undifferentiated and drastically reduced directed migratory response. The adaptive behavioral responses of Dictyostelium cells sensitive to substrates with varying physicochemical properties suggest the possibility of novel surface analyses based on the mechanobiological ability of mechanosensitive and guidable cells to probe substrates at the nanometer-to-micrometer level.

20.
PLoS One ; 9(9): e105406, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25207940

RESUMEN

Chemotactic signaling and the associated directed cell migration have been extensively studied owing to their importance in emergent processes of cellular aggregation. In contrast, mechanotactic signaling has been relatively overlooked despite its potential for unique ways to artificially signal cells with the aim to effectively gain control over their motile behavior. The possibility of mimicking cellular mechanotactic signals offers a fascinating novel strategy to achieve targeted cell delivery for in vitro tissue growth if proven to be effective with mammalian cells. Using (i) optimal level of extracellular calcium ([Ca(2+)]ext = 3 mM) we found, (ii) controllable fluid shear stress of low magnitude (σ < 0.5 Pa), and (iii) the ability to swiftly reverse flow direction (within one second), we are able to successfully signal Dictyostelium discoideum amoebae and trigger migratory responses with heretofore unreported control and precision. Specifically, we are able to systematically determine the mechanical input signal required to achieve any predetermined sequences of steps including straightforward motion, reversal and trapping. The mechanotactic cellular trapping is achieved for the first time and is associated with a stalling frequency of 0.06 ~ 0.1 Hz for a reversing direction mechanostimulus, above which the cells are effectively trapped while maintaining a high level of directional sensing. The value of this frequency is very close to the stalling frequency recently reported for chemotactic cell trapping [Meier B, et al. (2011) Proc Natl Acad Sci USA 108:11417-11422], suggesting that the limiting factor may be the slowness of the internal chemically-based motility apparatus.


Asunto(s)
Movimiento Celular , Modelos Biológicos , Transducción de Señal , Calcio/metabolismo , Espacio Extracelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...